

Molecular Dynamics simulation
of self-healing polymers

Andrew Gibbs

March 2011

Abstract

This project aims to introduce and discuss the theory and methods
behind Molecular Dynamics simulations of polymers. The underlying
aim is to to create a simulation protocol to study the network forma-
tion of polymers with self-healing properties. Initially, basic theory is
introduced - sufficient to model a single polymer in solution. Follow-
ing this, the methods for the self-healing model are explained. Finally
the cluster formation, functionality and stress modulus of these self-
healing polymer networks are analysed.

The following conventions apply throughout:

Differentiation of f with respect to time: ḟ =
df

dt

Position is defined by: r = (x, y, z)T

Velocity is defined by: v = ṙ

Acceleration is defined by: a = v̇ = r̈

An ensemble average of a quantity f is represented by: 〈f〉

CONTENTS i

Contents

1 Introduction 1

1.1 Self-healing polymers . 1

1.2 Project aims . 2

2 Polymer dynamics 3

2.1 Lagrangian and Hamiltonian mechanics 3

2.2 The partition function . 3

2.3 The Lagrangian of a polymer system 4

2.4 Langevin dynamics . 7

2.5 Potential of the polymer system 7

2.5.1 Lennard-Jones potential 8

2.5.2 Entropic spring potential 9

2.5.3 Coulomb potential . 10

3 Molecular Dynamics 11

3.1 Velocity Verlet . 12

3.1.1 Example - testing velocity Verlet 13

3.2 Lennard-Jones cutoff . 16

3.3 Periodic boundary conditions 17

4 Modelling a single polymer in solution 19

4.1 The model . 20

4.2 Initialization . 21

4.3 End-to-end distance distribution 22

4.4 Flory’s characteristic ratio . 23

4.5 Radius of gyration . 25

4.6 Summary of results . 26

5 Advanced methods 27

5.1 Initialization . 27

5.2 The Verlet & Cell lists . 28

5.2.1 Verlet list . 28

5.2.2 Verlet list for a periodic system 29

5.2.3 Cell list and comparison with Verlet list 29

5.3 Ewald summation . 30

5.4 Fast Fourier transform . 33

5.5 Multiple-tau auto-correlation function 34

ii CONTENTS

6 Modelling self-healing polymer networks 36
6.1 The model . 37
6.2 The stress modulus . 38

6.2.1 The Ewald problem . 39
6.3 Network analysis . 40

6.3.1 Example: Adjacency matrix of a simple system 41
6.4 Self-healing polymer networks 42

6.4.1 Cordier’s network . 43
6.4.2 Burattini’s network . 44

6.5 Functionality results . 46
6.6 Diffusion results . 47
6.7 Stress modulus results . 48
6.8 Summary . 49

A Single polymer in solution code 53
A.1 Verlet test code . 60

B Polymer network code 62
B.1 Analysis functions . 62
B.2 Mean squared displacement analysis code 66

Introduction 1

1 Introduction

The concept of a self-healing material is similar to that of a biological organ-
ism. For instance, when animal tissue becomes slightly damaged, its body
will react to this. The tissue then heals until it is, as far as the animal is
concerned, as good as new. Self-healing materials are a man-made attempt
at achieving this effect. One example of a self-healing material described
by White et al. (2001)[1] is designed for repairing cracks in brittle material
such as ceramics and glasses. Microcapsules containing a healing agent are
embedded into the structure of the material during synthesis, along with
a catalyst capable of polymerizing the healing agent. As the crack grows
through the material, it will eventually break open one of these microcap-
sules, allowing the healing agent to escape, spreading through the crack until
it reaches the polymerization catalyst. It will then fill the crack, until the
crack has been healed. The drawback with this method is that the healing
agent will eventually run out, so each area of the material can only be healed
a limited number of times.

Figure 1: Diagram of the microcapsule self-healing process (left),with an
image of a ruptured microcapsule (right). Photos produced by White et al.

(2001)[1]

1.1 Self-healing polymers

Due to the limited number of repairs possible in the microcapsule method,
Cordier et al. (2008)[2] have synthesized polymers which form chains and
cross-links through hydrogen bonding. These materials are elasticized, but
unlike rubber if a piece of the material is cut in half, under certain conditions,
the pieces can be simply held together and ‘healed’. This can take place at
room temperature and in some cases, only takes around 15 minutes. After
healing, they will still exhibit the same elasticity as before the fracture. It is
important that the healing starts soon after the cut, as the hydrogen atoms
near the gap will begin to form hydrogen bonds with new partners in their

2 Project aims

half of the material immediately. This will then reduce the number of free
atoms available for hydrogen bonding when the pieces are held together at a
later stage.

Figure 2: The cut (a), the join (b), the healing (c) and the preserved elasticity

(d) of the material. Photos produced by Cordier et al. (2008)[2]

At the University of Reading, Burattini et al. (2010)[3] have recently been
experimenting with self-healing polymers, where the healing process occurs as
a result of π-π stacking. This is due to π-electron-deficient diimide groups and
π-electron-rich pyrenyl units, although hydrogen bonding does still occur.
These materials will exhibit 95% of their tensile modulus after healing.

1.2 Project aims

Initially, this project aims to gain a firm understanding of basic polymer
physics (§2), and to introduce the basic ideas behind Molecular Dynamics
(§3), sufficient to model a single polymer in solution (§4). The develop-
ment and the theory behind this model serve as an excellent introduction
to molecular dynamics and polymer physics. The second (and main) aim is
to create a Molecular Dynamics simulation which can be parameterized to
model the self-healing polymers synthesized by the groups of both Cordier
and Burattini (§6). In particular, we are interested in the stress modulus,
and the network formation of the polymers in each case - ideally the results
of the simulation of Burattini’s polymers will offer greater insight into the
results of the real experiment. Each simulation is described as a coarse-
grained model (meaning that certain chemical information is ignored) with
no explicit solvent; treating the individual monomers in the chain as spheres,
using classical mechanics.

Polymer dynamics 3

2 Polymer dynamics

In this section the initial aim is to introduce the fundamental ideas behind
classical and statistical mechanics, before applying these principles to poly-
mers - with the underlying aim of eventually incorporating this information
into a simulation - the details of how are described in §3.

2.1 Lagrangian and Hamiltonian mechanics

Before the energies are discussed in detail, it is useful to make some strong
general statements that can be applied to any system. For a system of
kinetic energy K and potential energy U , Allen & Tildesley (1987)[4] defines
the Lagrangian as

L(w,v) = K − U, (1)

where w1 and v are vectors of generalized coordinates and velocities respec-
tively, that are used to describe the system. The Hamiltonian H is defined
as

H(w,p) =
∑
i

piẇi − L,

where p is a vector of generalized momenta associated to the system; i de-
notes the individual components of the vectors p and w. L must be redefined
to be consistent with the variables used to describe H, for example by sub-
stituting vi = pi/mi. The Lagrangian equation of motion, for a generalized
coordinate wk is given by

d

dt

(
∂L
∂ẇk

)
− ∂L
∂wk

= 0, (2)

whilst the Hamiltonian equations of motion are defined as

ṗ = −∂H
∂w

, ẇ =
∂H
∂p

.

2.2 The partition function

In both classical and quantum mechanical canonical ensembles, to find the
probability of a system being in any given state, it is common to use the
result of the partition function Z, which weights every possible microstate

1In literature the generalized coordinate is typically described using qi instead of wk,
whilst it has been defined differently here to avoid later confusion when dealing with the
charge on a particle, also denoted qi in literature.

4 The Lagrangian of a polymer system

Hs in accordance with its Boltzmann factor. This is given by Frenkel & Smit
(1996)[5], as

Z =
1

N !h3N

∫
e
− 1

kBT
Hs(p1,...,pN ,w1,...,wN)

dp1...dpNdw1...dwN ,

where kB is the Boltzmann constant, T is the absolute temperature and h is
Planck’s constant. In quantum mechanical systems, this function takes the
form of a summation, as there are only finitely many energy states possible.
The probability that a system is in any given state with energy Hs can be
obtained from

P (Hs) =
1

Z
e
− 1

kBT
Hs ,

where 1
Z

acts only as a normalisation constant. Marzari, (2005)[6] explains
that any average quantity 〈A〉 can also be computed via the relationship

〈A〉 =

∫
A(p1, ...,pN ,w1, ...,wN)e

− 1
kBT

H
dp1...dpNdw1...dwN∫

e
− 1

kBT
H

dp1...dpNdw1...dwN

.

Based on the dimensional abundance of many systems, computing 〈A〉 using
the above expression would be very difficult - if not impossible. Luckily, due
to the numerical nature of computer simulations, we are in the convenient
position of being able to measure and record any quantity of our system,
whenever we please - an asset absent of real experiments. After allowing
sufficient time Teq for equilibrium, we can instead appeal to the relationship

〈A(t)〉 = lim
T→∞

1

T/δt

T/δt∑
k=0

A(Teq + kδt),

where δt represents the time between recording data, to be averaged over time
T . The larger the sample of data T , the more reliable the statistical results
become. It is also common to take the time gap between measurements of
quantities δt to be around 10 or 100, as measuring every time step will just
lead to repeated information (on top of the increased computation cost).

2.3 The Lagrangian of a polymer system

When modeling polymers, there are useful assumptions which can be made.
In a system of N particles, each free to move in 3 dimensions, 3N generalized
coordinates will be required to construct the Lagrangian. However, due to
the symmetry of x, y and z in the system considered here, we can simply

Polymer dynamics 5

choose xi as our generalized coordinate wk for now, as equivalent results for
yi, zi will follow by symmetry. The total kinetic energy of the system is
described by

K =
N∑
i=1

1

2
mi |ṙi|2 =

1

2
m

N∑
i=1

|ṙi|2 (3)

where 1
2
m has been taken outside of the summation, as each monomer (in

this system) has equal mass mi = m. This definition can easily be switched
to Hamiltonian coordinates using the change of variables mi |ṙi|2 = 1

mi
|pi|

2.
The average kinetic energy (in 3 dimensions) is related to the temperature
T of the system via the relationship

〈K〉 =
3

2
kBT =

1

2
m

N∑
i=1

|ṙi|2 , (4)

(Frenkel & Smit 1996)[5]. In a simulation of constant temperature, it is com-
mon to rescale the kinetic energies of each individual particle to maintain
this temperature in the presence of subtle numerical errors. All of the po-
tential energies considered for our polymer systems depend only on position
coordinates r, whilst K depends only on ṙi, so we can make the following
two statements:

∂K

∂xi
= 0,

∂U

∂ẋi
= 0. (5)

Combining (1) and (2) gives

0 =
d

dt

(
∂L
∂ẋi

)
− ∂L
∂xi

=
d

dt

(
∂(K − U)

∂ẋi

)
− ∂(K − U)

∂xi

=
d

dt

(
∂K

∂ẋi
− ∂U

∂ẋi

)
− ∂K

∂xi
+
∂U

∂xi
.

This equation of motion can now be simplified using (5),

d

dt

(
∂K

∂ẋi

)
+
∂U

∂xi
= 0. (6)

We proceed to derive the corresponding force coordinate Fi on a single par-

6 The Lagrangian of a polymer system

ticle i, using 6 and (3),

d

dt

(
∂K

∂ẋi

)
=

d

dt

(
∂

∂ẋi

(
1

2
m

N∑
j=1

ẋj
2

))

=
d

dt

(
1

2
m · 2ẋi

)
= mẍi

d

dt

(
∂K

∂ẋi

)
= Fi,

where the final step is just Newton’s second law. Substituting into equation
(6) and re-arranging yields

Fi = −∂U
∂xi

.

Written back in 3-dimensional form, this is simply

Fi = −∇
ri

U. (7)

The above expression can be used to derive the force on a single particle
i, based on the potential U of the system. Furthermore, (7) can be used
to provide a relationship which is useful from the perspective of molecular
simulations. Since the potential energy depends only on particle positions r,
it is straightforward to show that the total energy U +K of any such system
is constant, as shown (in the 1 dimensional case) by Marzari (2005)[6]. We
differentiate the total energy with respect to time,

d

dt
(U +K) =

d

dt
U +

d

dt

(
1

2

N∑
i=1

miṙ
2
i

)

=
N∑
i=1

dri
dt
· ∂
∂ri

U +
N∑
i=1

miṙi · r̈i

=
N∑
i=1

[−ṙi · Fi +miṙi · r̈i]

= 0, (8)

where the result from (7) is used in the final step, proving that the total
energy of any closed, pair-potential system is constant. This is useful for
monitoring the error in a simulation of an isolated system; any significant
fluctuations in total energy may signify error.

Polymer dynamics 7

2.4 Langevin dynamics

When molecules are ‘in solution’, they will be physically affected by colli-
sions with relatively smaller particles (e.g water molecules) of the solution
that they are in - described as Brownian motion. Rather than additionally
modelling large numbers of comparatively tiny molecules, these small forces
FR can be treated as random and we can assume that the probability of
this force being in any direction is the same; 〈FR〉 = 0. It follows that the
distribution of FR is Gaussian - with variance β2, and is modeled via a white
noise function Wi(t).

A particle moving in a direction is more likely to experience random kicks
in the opposing direction. This can be considered a frictional force −γṙi,
against the direction of motion. In summary, the Langevin equation of mo-
tion takes the form of Newton’s second law, minus a frictional term, plus a
random white noise. It is defined2 by Kremer & Grest (1990)[7] as

F (ri) = −∂U
∂ri
− γmiṙi +Wi(t). (9)

The fluctuation-dissipation theorem is an important result, derived by
Nyquist in 1928 and alternatively by Kubo in 1966. Felderhof (1978)[8] pro-
vides details of the derivations, but the a key result is that

α2 = 6kBT γmi

which can be used to link the relative amplitudes of the random and frictional
terms in (9). In the limit of strong friction, it follows that

γṙmi =
√

6kBT γmiWi(t),

which relates the frictional term to the small random forces. This relationship
should be maintained during simulation.

2.5 Potential of the polymer system

Here, the potential energies used in our polymer simulations will be intro-
duced and briefly discussed. Aside from those explained here, there are other
less significant potentials based on bond angles and conformation properties,
but those are not used in these simulations. Each potential considered is a

2The Langevin equation of motion is actually defined with a sign error by Kremer &
Grest (1990)[7], which has been corrected here.

8 Potential of the polymer system

pair-potential; a function of the distance between two particles. Due to
this, it is useful to introduce the following notation:

rij = ri − rj,

rij = |ri − rj| .

Physically, rij represents the separation between particles i and j, whilst rij
is the length of this separation. These definitions are used throughout.

2.5.1 Lennard-Jones potential

The Lennard-Jones (LJ) potential between two particles i and j is given by

Frenkel & Smit (1996)[5] (and many other books) as

ULJ,ij := 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

where σ is the particle diameter and ε represents the potential depth. It is
clear that rij = σ ⇒ ULJ = 0, which physically corresponds to zero energy
when the particles are touching. (σ/rij)

12 is commonly referred to as the
repulsive part, describing Pauli repulsion, and dominates at shorter ranges.
The repulsive part explodes as rij → 0+, as this represents overlapping elec-
tron orbitals, which (except when dealing with extreme cases such as nuclear
fusion) is physically unrealistic. The attractive part (σ/rij)

6 dominates at
longer ranges, but becomes less significant as rij →∞. This part is theoret-
ically justified, representing dispersion force between particles. Conversely,
the repulsive part has no theoretical justification, but is a convenient approx-
imation to close range repulsion in a computational sense. This is because
the relationship r12 = (r6)2 can be used, to save calculating both parts from

scratch (Allen & Tildesley 1987)[4].

Lennard-Jones is a pair potential, therefore the total LJ energy must con-
sider every possible pair of monomers in the system. This results in N(N−1)

2

calculations for potential energy - although certain steps can be taken to
reduce this (discussed in §3.2 and §5.2.1). As every particle acts on every
other particle, it follows that the total Lennard-Jones energy is given by

ULJ = 4ε
N−1∑
i=1

N∑
j=i+1

[(
σ

rij

)12

−
(
σ

rij

)6
]

(11)

where we have summed over all particle pairs, and taken constants outside
the summation. We can calculate the Lennard-Jones force acting on a single

Polymer dynamics 9

particle i via the relationship (7)

Fi,LJ = −∇
ri

ULJ

= 24ε
N∑
j=1

i 6=j

rij

[
2σ12

r14
ij

− σ6

r8
ij

]
. (12)

The repulsive part of (12) ensures that there will be no significant over-

lap between particles in a system under ULJ . Rubinstein & Colby (2003)[9]

describes this as excluded volume, a property of real chains. Alterna-
tively, ideal chains ignore excluded volume. These are described in detail
by Rubinstein & Colby (2003)[9], and are a very useful model for predict-
ing polymer behavior. There are many different ideal chain models, each of
which allow particles to overlap and relax the constraint of excluded volume.
All simulations discussed here will treat the polymers as real chains.

2.5.2 Entropic spring potential

Kremer & Grest (1990)[7] (amongst others) defines the entropic spring po-
tential for bond energy between neighboring monomers i and j in the chain
as

UFene,ij := −κR0

2
ln

[
1−

(
rij
R0

)2
]
,

where κ is the spring constant and R0 is an upper bound on the bond length
permitted by UFene,ij. FENE stands for ‘finitely extensible nonlinear elastic’.
In fact, due to its logarithmic nature the potential is always negative and
increasing, thus the corresponding force is always attractive. It follows that
without some additional form of repulsion such as Lennard-Jones potential
present, the system will collapse as only attractive forces are present. Unlike
LJ, for a linear chain only N−1 calculations will be required to compute the
total energy, as only neighboring monomers are considered. We index such
that the total FENE potential is given by

UFene = −κR0

2

N−1∑
i=1

ln

[
1−

(
ri,i+1

R0

)2
]
,

10 Potential of the polymer system

whilst the corresponding force on a single monomer i is given by

Fi,Fene = −∇
ri

UFene

= −κ

(ri − ri+1)
1

1−
(
ri,i+1

R0

)2 + (ri − ri−1)
1

1−
(
ri,i−1

R0

)2

 .(13)

As most terms are killed off by the partial derivative - only neighboring
monomers will directly affect the motion of i. However, each of these monomers
is affected by its neighbours also, so each monomer in the chain affects each
other monomer. This relationship is described as telechelic - where infor-
mation can be passed between any two monomers in the chain.

2.5.3 Coulomb potential

Jackson (1975)[10] gives coulomb energy as

Uc,ij := − qiqj
4πε0εrrij

where qi and qj are the charge of particle i and j respectively. εr is the
dielectric constant, representing the electrical permittivity of the solution,
and ε0 is the electrical permittivity in a vacuum. Again, we can describe the
total coulomb potential of the system as

Uc = − 1

4πε0εr

N−1∑
i=1

N∑
j=i+1

qiqj
rij

. (14)

It follows that the force acting on a single particle i is given by

Fi,c = −∇
ri

Uc

=
1

4πε0εr

N∑
j=1

i 6=j

(ri − rj)
qiqj
r3
ij

. (15)

Clearly, if qi and qj are of the same sign, the force will be repulsive, zero for
a neutral charge and attractive if the signs are opposite. When two charges
have a separation rij such that their interaction energy is comparable to kBT ,
rij is referred to as the Bjerrum length. This can be formally defined as

lB :=
|qiqj|

4πεrε0kBT
. (16)

The value of this parameter lB plays a significant role in charged simulations,
as is discussed in §6.

Molecular Dynamics 11

3 Molecular Dynamics

Molecular dynamics is a computer simulation method, used to study dynam-
ical behavior of particles on a microscopic scale to understand the macro-
scopic properties of a system, bridging the gap between experimental and
theoretical science, whilst strictly falling into neither category. It has been
in use since the 1950s, and has since become recognized as a powerful tool in
understanding physical biological and chemical phenomena, which would be
unapproachable through experimentation. It can predict how a new material
will behave, prior to manufacture, or could predict how an existing material
would react under conditions that would be very expensive to replicate in a
laboratory. Conversely, rather than using known theories to predict results
of experiments, it can test the validity of a new theory or model to simulate
an experiment with known results (Frenkel & Smit 1996)[5]. Whilst there
are other simulation methods available, the Molecular Dynamics method is
well suited to what we are aiming to model.

The general form of any Molecular Dynamics simulation can be broken down
into 4 sections, as follows:

1. Assign initial positions and velocities to a set of particles

2. Calculate the force acting on each particle

3. Use a numerical method to calculate positions and velocities at the
next time step

4. Loop stages 2 and 3 until the desired results are obtained

As with any numerical method, the implementation of relevant mathematical
theory onto a computational platform requires several refinements and alter-
ations to be effective. For instance, computers can only manipulate numbers,
hence equations for force calculation (stage 2) cannot be left in the general
form enjoyed by the previous section (§2). The method of initialization (stage
1) and the force acting on each particle will depend on the type of system
we are choosing to model, we make use of a simple method in §4.2, whilst a
more advanced method is explained in §5.1. We turn our attention to stage
3.

12 Velocity Verlet

3.1 Velocity Verlet

In most real life situations, it is difficult or impossible to find the global solu-
tion of an initial value problem based on a system of N differential equations.
Instead we use a finite difference method and descretise the simulation time
[0, Tf] into M + 1 timesteps of length ∆t = Tf/M , writing

[0, Tf]→ {0,∆t, 2∆t, . . . ,M∆t} .

There are a few variations of the Verlet integration, each of which are mathe-
matically equivalent. The version used in these simulations is Velocity Verlet.
Verlet boasts greater stability than the Euler method, and whilst there are
more accurate (and naturally more complicated) methods available, the local
error of O(∆t2) is sufficient for our needs. This method can be derived using
a combination of the following expressions

r(t+ ∆t) = r(t) + ∆tṙ(t) +
1

2
∆t2r̈(t) +O(∆t3),

ṙ(t+ ∆t) = ṙ(t) +
1

2
∆t [r̈(t) + r̈(t+ ∆t)] +O(∆t2),

where the error can be calculated by Taylor expanding about (t + ∆t) (see

for example, Frenkel & Smit (1996)[5]). Using the relationship r̈ = v̇ = a,
we can derive new information after each time step ∆t.

Step 1 - Calculate new positions based on current data:

r(t+ ∆t) = r(t) + ∆tv(t) +
1

2
∆t2a(t).

Step 2 - Calculate half-step velocities based on current data:

v(t+
1

2
∆t) = v(t) +

1

2
∆ta(t).

Step 3 - Calculate new acceleration, based on the force resultant of new
position data:

1

m
F(r(t+ ∆t)) = a(t+ ∆t).

Step 4 - Calculate new velocity based on new acceleration and half step
velocity data:

v(t+ ∆t) = v(t+
1

2
∆t) +

1

2
∆ta(t+ ∆t).

Molecular Dynamics 13

Note that the calculation of v(t+ ∆t) in step 4 requires a(t+ ∆t), which is
obtained in step 3. Hence if the force depends on velocity, F(t+ ∆t) cannot
be calculated, since v(t+∆t) is not yet known, because F(t+∆t) is required
to calculate it. It follows that the error arising from a single application of
Velocity Verlet is O(∆t2).

The method can be made more accurate with a smaller choice of ∆t. Allen
& Tildesley (1987)[4] suggests ∆t must be significantly less than the time
it takes for the particle to travel its own diameter, as any initial errors
could contribute to much larger errors later in simulation. Typically we
take ∆t = 0.012, the significance of this is displayed in figure 3.

Figure 3: 2 layered images taken 100 time steps apart from the single polymer
model (§4), where ∆t = 0.0012

Each of r, v, a, can be overwritten at each new time step (including the half
step at stage 2) to save memory. It follows that we require 9N variables of
space to record these 3 quantities in 3 dimensions for a system of N particles.

3.1.1 Example - testing velocity Verlet

Consider the 1 dimensional harmonic oscillator with the initial conditions
r̈(t) + r(t) = 0, t ∈ [0, 100],
r(0) = 1,
ṙ(0) = 2.

The exact solution is given by

r(t) = cos(t) + 2 sin(t).

14 Velocity Verlet

We discretize [0, 100] into M + 1 points 0,∆t, 2∆t, . . .M∆t. The velocity
Verlet method is used as an approximate solution, where rm = r(m∆t) with
∆t = 100/M . There are sufficient initial conditions, whilst the acceleration
can simply be calculated via r̈ = −r. For example, the first step can be
calculated using r0 = r(0) and ṙ0 = ṙ(0), yielding

r1 = r0 + ∆tṙ0 − 1
2
∆t2r0,

ṙ 1
2

= ṙ0 − 1
2
∆tr0,

r̈1 = −r1,
ṙ1 = ṙ 1

2
− 1

2
∆tr1,

where the substitution r̈m = −rm is used throughout. This process can then
be continued (preferably by a computer - the code is given in appendix A.1).
We can calculate the error at each time step, by comparing the exact solution
with the velocity Verlet solution

τ = |r(tm)− rm| .

The results are displayed in figure 4 and figure 5, comparing the error for
two different values of ∆t. From these results, the error that can be incurred
by the choice of ∆t is clear. It is also worth considering that this is the error
on a single particle, in a system of N = 1000 particles the error would be far
greater; although figure 5 shows ∆t = 0.1 gives a sufficiently close result to
the exact solution for this simple oscillator, it would not suffice in the more
complex simulations that follow.

Molecular Dynamics 15

Figure 4: Velocity Verlet approximation for ∆t = 1. The range has been
extended to exhibit the oscillatory nature of τ . In a non-periodic system,
this oscillatory error would not occur.

Figure 5: Velocity Verlet approximation for ∆t = 0.1. It is very difficult to
distinguish between the two curves here - as the approximation is so effective.

16 Lennard-Jones cutoff

3.2 Lennard-Jones cutoff

The calculation of ULJ and FLJ must consider all possible pairs of particles
of the system. This results in N(N−1)

2
calculations; it is worthwhile during

computation to effectively avoid LJ calculations which will yield relatively
insignificant results. A cutoff radius, rc is introduced; whereby only particle
interactions such that rij ≤ rc are considered. However, calculating rij can
also prove costly, as it requires square rooting, an expensive computation,

rij = |ri − rj| =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

Where the RHS is the most similar to the algorithm in the code - each
dimension is computed separately. This square rooting is easily avoided,
simply by comparing against r2

c instead;

r2
c ≤ r2

ij = (ri − rj) · (ri − rj) = (xi − xj)2 + (yi − yj)2 + (zi − zj)2.

For exactly the same reason, it is more efficient to calculate the Lennard-
Jones force using the form

FLJ,ij(rij) = 24ε
N∑
i=1
j 6=i

rij

[
2
σ12

(r2
ij)

7
− σ6

(r2
ij)

4

]
,

as computing r2
ij first and subbing into the above algorithm is far more effi-

cient. The LJ force between particles i and j can now be re-defined as

F∗LJ,ij(rij) =

{
FLJ,ij(rij), (rij ≤ rc),

0, (rij > rc),

where outside of the cutoff radius, all LJ interactions are ignored. This cutoff
leads to a discontinuity in ULJ , which is corrected by shifting the potential,

U∗LJ,ij(rij) =

{
ULJ,ij(rij)− ULJ,ij(rc), (rij ≤ rc),

0, (rij > rc).

For the case U∗LJ , typically rc = 2.5σ, which results in the particles having
an attractive tail. Alternatively a ‘purely repulsive’ cutoff is used, in which
rc = 21/6σ. This is obtained by simply finding the turning point in the
potential, so we consider

0 =
∂ULJ,ij(rc)

∂rij

0 = 4ε

(
−12

σ12

rc13
+ 6

σ6

rc7

)
⇔ rc = 21/6σ

Molecular Dynamics 17

as required. This principle of a cutoff radius can applied to any potential
considered to become negligible as rij →∞.

3.3 Periodic boundary conditions

Despite development of computer technology, the number of particles which
can be simulated is still limited to less than 106, which is still small compared
with Avogadros number3. In order to mimic a macroscopic system, periodic
boundary conditions (PBC) are used, which take a relatively small (usu-
ally cubic) sample of the substance being modeled and effectively represents
the macroscopic solution by repeating the unit sample periodically in space.
The motivation here is to represent the effect of particles surrounding those
inside the sample cell, without having to model them explicitly. As an ex-
ample, Marzari (2005)[6] claims it can be used to effectively model water by
repeating the image of just 32 water molecules in the central simulation box.

Under PBC, if a particle should leave the simulation box, it re-enters via
the opposite side 4. As discussed by Allen & Tildesley (1987)[4], to avoid
jumps in force calculations, it is also necessary to repeat the image of the
simulation box in every direction, so that if two particles are close to the
edge of the box, and one jumps from one side to the other, they are still close
- at least in a sense of forces between them. Clearly this can not apply to
bonded forces such as FFene. Hence if our simulation box is of length L and
is repeated n times in each direction, a particle situated at position ri has
an image r′i in the positions(s)

r′i = ri + nL, n ∈ {−n, . . . ,−1, 0, 1, . . . , n}3 (17)

To see how this will effect motion of particles, consider the total effect of
some pairwise force F(rij) on a particle i

Fi =
N∑

j=0,j 6=i

F(ri − rj),

3Avogadro’s number relates the number of molecules to the amount of the the substance
measured (in moles) and is approximately 6.02214179× 1023. This represents the order of
the total number of particles contained in a macroscopic sample.

4Frenkel & Smit (1996)[5] describes periodic boundary conditions in 2 dimensions as a
mapping from the simulation space to the surface of a sphere - as nothing can ever leave
the surface by moving along it in any given way. It is actually topological equivalent to a
torus, not a sphere. Similarly, our 3 dimensional case is equivalent to the far less intuitive
concept of mapping the simulation space onto a 4 dimensional hyper-torus.

18 Periodic boundary conditions

which is re-written under PBC as

Fi =
boxes∑

n

N∑
j=0

′F(ri − [rj + nL]).

In the above equation, the dash′ represents ‘i 6= j when n = 0’, which
essentially means that a particle in the central box can interact with any
image of itself not in the central box. Taking n = 1 in (17) corresponds to 27
cubes; it follows that the number of boxes in a simulation will be (2n+ 1)3.
If the simulation box has opposite corners at position (0, 0, 0) and (L,L, L),
(whilst results are equivalent to any box position, this is generally the most
intuitive) the PBC implies the mapping

PBC : ri 7−→

 xi
yi
zi

 mod

 L
L
L

 .

This is simple to implement computationally. To avoid a particle interacting
with its own image from all directions at the same time, it is necessary
to choose L > rc. Hence a force with a shorter cutoff radius rc requires
less periodic boxes. Many boxes are required to model long range charged
interactions, a method of calculating this efficiently is discussed in §5.3.

Modelling a single polymer in solution 19

4 Modelling a single polymer in solution

In this section, the theories and methods introduced in §2 and §3 are used
to model a single polymer in solution. Various quantities such as end-to-
end distance, radius of gyration and average bond length are introduced and
discussed within the context of the simulation results. The code for this
simulation can be found in appendix A.

20 The model

4.1 The model

We model the single polymer with no explicit solvent, under the potential
energy

U = U∗LJ + UFene

where the ∗ represents a truncation in the LJ potential. We choose the
LJ cut off rc = 2

1
6σ, resulting in purely repulsive LJ. We take ε, σ and

m to be the fundamental units of energy, distance and mass respectively.
The use of reduced units is convenient for two reasons. Firstly, our reduced
quantities are now comparable as they are of similar magnitude - this is far
more convenient than having to deal with lengths on a molecular scale (for
example, quantities of 10−9 meters). Secondly, for example by setting σ = 1,
any calculation in which a number is multiplied by σ can now be ignored -
reducing the overall computation time (Allen & Tildesley 1987)[4]. We do
not use periodic boundary conditions, and any frictional or random forces are
ignored. The parameters κ and R0 of UFene are assigned within the suggested
boundaries of Rubinstein & Colby (2003)[9] as follows:

1.5σ ≤ R0 ≤ 2σ, 5ε/σ2 ≤ κ ≤ 30ε/σ2.

Specifically we choose parameters based on Kremer & Grest (1990)[7], which
agrees with the above conditions. It is worth noting that all numerical results
of the simulation will depend on these:

R0 = 1.5, κ = 30,

we also choose a purely repulsive Lennard-Jones cutoff rc = 21/6. The equa-
tion of motion for a single particle i becomes

Fi = −∇
ri

(U∗LJ + UFene)

= 30

{
(ri − ri+1)

1

1− (
2ri,i+1

3
)2

+ (ri − ri−1)
1

1− (
2ri,i−1

3
)2

}

+24
N∑
j=1

j 6=i

(ri − rj)

[
2

1

r14
ij

− 1

r8
ij

]∗
.

Note that the above equation is the most general that can be written; the
FENE force must drop the left hand term when i = N , and the right hand
term when i = 1. Similarly the ∗ represents the condition that the entire LJ
term must be dropped if rc > 21/6. Most simulations will model a chain of
N = 30 monomers.

Modelling a single polymer in solution 21

4.2 Initialization

Before forces can be calculated, initial positions and velocities must be as-
signed to all particles in the system. The initial velocities will typically follow
a Gaussian distribution, and can be scaled in accordance with equation (4).
There are many ways to assign positions, but for such a simple system, it is
sufficient to adopt the following procedure:

• Set r1 = (0, 0, 0)T

• Generate successive position vectors for particle 2 up to particle N,
using the simple relationship

ri+1 = ri +
l0
|R|

R

where R is a random 3 dimensional vector and l0 is the initial bond length
which must satisfy l0 < R0. To initialize under excluded volume we choose
l0 = 1; after initialization we can rely on the repulsive LJ to prevent sig-
nificant particle overlaps and maintain this excluded volume. After each
monomer (i ≥ 3) is generated, the condition

min
j∈0,1...N

(rij) ≥ l0

must hold, otherwise it is re-generated. This ensures that no particle is closer
to particle i than its bonded neighbours. However, this could lead to an infi-
nite loop, (described informally by figure 6). This is compensated for by the
code; should there be more than 50 regenerations the entire chain is gener-
ated again from scratch. This initialization method is only appropriate for
smaller systems such as this; in §5.1 a method for larger systems is intro-
duced. The random vector R and the initial Gaussian velocity are generated
using ran1 and gasdev respectively, both taken from Press et al. (1992)[11].

Figure 6: A 2-D representation of how a self-avoiding random walk generated
using the method above could go wrong, where the green node is the first
step in the walk and the red node is the last. There is no possible next step.

22 End-to-end distance distribution

4.3 End-to-end distance distribution

A useful quantity is the end-to-end vector of the polymer, defined as

ree :=
N−1∑
i=1

(ri+1 − ri) = rN − r1,

it follows that the predicted value of ree depends on the assumptions we make,
and the model we use. Rubinstein & Colby (2003)[9] explains a variety of
ideal chain models, which ignore excluded volume. A general assumption
made for these static ideal chains is that

〈ree〉 ∼= 0, (18)

based on the assumption that the position of the next monomer in the chain
is just as likely to be in one direction as it is in the opposite direction.
However, the above assumption should still apply under excluded volume -
the monomers do not need to overlap for their average separation to be 0
(apart from a 1D case). Over a sufficient interval [T0, Tf] we can similarly
assume that ∫ Tf

T0

(ree)dt ∼= 0. (19)

It is a more interesting result to measure ree =
√

ree · ree, the end to end
distance. During simulation, ree was measured over 108∆t; it was found that
for a chain of N = 30 monomers 〈ree〉 ≈ 8.426. Rubinstein & Colby (2003)[9]

predict the distribution of ree to take the form

P (ree) ∼= 0.278

(
ree√
〈r2
ee〉

)0.28

exp

−1.206

(
ree√
〈r2
ee〉

)2.43
 ,

although this is not based on rigorous theory. To obtain useful predictions
from this we must consider the probability of ree lying in some given area
under the curve. We convert into spherical coordinates, by selecting a spher-
ical interval [ree, ree + dr]. The predicted distribution now represents the
probability of rN lying between a sphere of radius ree and another of radius
ree + dr, with both spheres centered at r1

P◦(ree) ∼= 4π0.278

(
ree√
〈r2
ee〉

)0.28

exp

−1.206

(
ree√
〈r2
ee〉

)2.43
 ree

2dr.

Figure 7 compares the prediction of Rubinstein & Colby (2003)[9] with the
results of our simulation - which closely agrees with the prediction.

Modelling a single polymer in solution 23

Figure 7: The dashed curve is the predicted ree from Rubinstein & Colby
(2003)[9], the full red curve is from a sample of data taken over 108 time
steps.

4.4 Flory’s characteristic ratio

Flory’s characteristic ratio is an effective measurement of the stiffness of
the chain. Instead of considering the end-to-end distance, we consider the
quantity 〈r2

n〉, which is the average squared distance between two monomers
n bonds apart in the chain. For convenience, we switch notation to deal
with bond vectors, as opposed to position vectors. We define ri,i+1 = ri
representing a bond vector, and n = N − 1 representing the number of
bonds. 〈r2

n〉 can now be written as

〈
rn

2
〉

= 〈rn · rn〉

=

〈(
n∑
i=1

ri

)
·

(
n∑
j=1

rj

)〉

=
n∑
i=1

n∑
j=1

〈ri · rj〉 .

24 Flory’s characteristic ratio

By the definition of the dot product, we can write

〈
r2
n

〉
=

n∑
i=1

n∑
j=1

〈
l2 cos(θij)

〉
=

〈
l2
〉 n∑
i=1

n∑
j=1

〈cos(θij)〉

= Cnn
〈
l2
〉

(20)

where θij is the angle between bonds i and j, and 〈l2〉 is the average bond
length. This assumes there is no correlation between the bond length and
the bond angle. Rubinstein & Colby (2003)[9] defines Cn as Flory’s char-
acteristic ratio, where

Cn :=
1

n

n∑
i=1

cos(θij).

As Cn considers all of the bond angles of the system, it is an effective mea-
surement of the stiffness of the polymer. As n→∞, Cn converges to a limit
C∞. In our simulation, Cn is calculated via the relationship

Cn =
〈r2
n〉

n 〈l2〉

where 〈l2〉 is necessary, because the bond length during simulation is not con-
stant and gives the result 〈l2〉 ≈ 0.934. Remembering that the fundamental
unit of length is taken in terms of the particle diameter σ = 1, this average
length actually represents a small amount of overlap. The chain modeled
(N = 30 monomers) is too small to calculate C∞ in this case. As a couple of
examples, the values of C∞ for chains of polyethylene and atactic polystyrene
are 7.4 and 9.5 respectively (Rubinstein & Colby 2003)[9].

Modelling a single polymer in solution 25

Figure 8: Graph of Flory’s characteristic ratio for N=30 monomers (with
n=29 bonds)

4.5 Radius of gyration

Another characteristic of a polymer chain is the radius of gyration rg, which
represents the average distance from the center of mass. In practice (due to
computational convenience) it is more common to consider the square radius
of gyration

r2
g =

1

N

N∑
i=1

(ri − rcm)2, (21)

where rcm is the center of mass (Rubinstein & Colby 2003)[9]. Theoretically
rcm should be written as

rcm =

N∑
i=1

miri

N∑
i=1

mi

,

but for the chain we are modeling all masses are assumed to be equal, so the
above formula simplifies to

rcm =
1

N

N∑
i=1

ri.

The above is combined with (21) to compute
〈
r2
g

〉
. The radius of gyration

is a good measure of the freedom of the monomers in the chain; a large rg

26 Summary of results

corresponds to monomers being further away from the center of mass, sug-
gesting a greater amount of freedom, allowing the chain to expand. Polymers
exhibiting this are said to be in ‘good solvent’; meaning the polymer is more
attracted to the solvent than itself.5 A smaller value of rg corresponds to a
chain that is contracting - when the polymer is in ‘poor solvent’ it contracts,
forming globules. The case where a polymer is equally attracted to its sur-
roundings and itself is described as θ-point. In §6 we model a polymer melt,
in which the polymer is surrounded by other polymers identical to it and thus
is at θ-point. Flory (1958)[12] gives an interesting result; when at θ-point,
excluded volume can be ignored in theoretical models - and the polymers can
be treated as ideal chains6.

4.6 Summary of results

The following table is a summary of the quantities discussed when model-
ing a single polymer chain, consisting of 30 monomers. Under the reduced
units already discussed, considering that κ=30 and ε=1, we record data over
108∆t, where the time step is taken to be ∆t = 0.012. All the values are in
terms of the particle diameter σ.

Quantity:
〈
r2
g

〉
〈r2
ee〉 〈l2〉

Value (3.d.p): 11.0173 71.004 0.934

As the model is very basic, we cannot draw any meaningful conclusions from
these figures - other than that the numbers agree with Kremer & Grest
(1990)[7], verifying our model as correct. To gain some relative perspective,
the fully extended chain is given by N 〈l〉 ≈ 29.1, when compared with the
average end-to-end distance 〈ree〉 ≈ 8.4, this represents the average extension
of the chain. These quantities are also computable in the more complex sys-
tems modeled in §6, where we are primarily interested in quantities related
to the reversible network formation of the polymers. Furthermore, there are
two types of polymer present, so two separate sets of results are required -
despite the fact that the results for one polymer chain most probably depend
on the parameters of the other. Before we are equipped to model and analyze
these self-healing polymer systems, further methods must be introduced.

5An example of a polymer in good solvent is sodium polyacrylate - the gel used in
absorbent nappies. This expands by over a hundred times when exposed to water - a
polymer than likes its surroundings much more than itself (Helmenstine 2007)[13].

6In the ideal case, this can be further simplified to show the interesting Deybe result;〈
r2g
〉

= 1
6

〈
r2ee

〉
, (Rubinstein & Colby 2003)[9].

Advanced methods 27

5 Advanced methods

In this section we introduce the advanced methods required for more com-
plex MD simulations, which were not required for the comparatively simple
simulation of a single polymer. Mostly, the content of these methods does
not overlap and so their description is in no particular order - although it
is worth noting that the fast Fourier transform and the multiple-τ auto-
correlation function have applications ranging far beyond MD simulations.

5.1 Initialization

For large dense systems, it is very unlikely that randomly positioned particles
will not overlap. If this is the case, a warm up period as described by Auhl
et al. (2003)[14] might be used to initialize the system. At the start of this
warm up, a random walk is used to position particles of the polymers, and
the polymers are randomly positioned inside the simulation box. This results
in some overlap initially. At this stage a force-capped Lennard-Jones
potential U fc

LJ is introduced to slowly separate the particles, without the
explosive properties that regular ULJ would impose. Similar to the concept of
the cutoff radius discussed in §3.2 a force cutoff rfc is used, which corresponds
to the maximum force allowed by this capped potential7. Hence force-capped
Lennard-Jones is defined as

U fc
LJ,ij :=

{
(rij − rfc)U ′LJ,ij(rfc) + ULJ,ij(rij), (rij < rfc),

ULJ,ij(rij), (rfc ≤ rij).

This potential is linear at rij < rfc, and bounded at rij = 0, whereas normal
ULJ explodes as rij → 0+. The corresponding force at any separation less

than rfc is equal to the force at rfc. Physically U fc
LJ will cause a gentle re-

pulsion between overlapping particles, allowing them to gradually reposition
until a realistic setting for initialization (without overlap) is reached. In the

case of Auhl et al. (2003)[14], at the start of the warm up period rfc=rc but
gradually decreases, hence U fc

LJ → ULJ typically until rfc = 0.8σ. By this
stage, there should be no particles overlapping by this amount, so U fc

LJ will
have the same effect on our system as ULJ anyway. The main simulation
loop can now begin, although if there are other forces which can only be
introduced after warming up, it is worth allowing time for these forces to
settle before worthwhile data can be recorded.

7Note that it is most likely a truncated LJ potential U∗
LJ,ij will also be used in place

of ULJ,ij .

28 The Verlet & Cell lists

5.2 The Verlet & Cell lists

Whilst deploying a cutoff radius rc (as explained in §3.2) reduces the number

of necessary pairwise force calculations from N(N−1)
2

, we must still check this
number of particles to decide whether or not the force between them should
be calculated. Realistically, if two particles are far apart, say rij = 2rc at a
time t, we can judiciously assume (without checking) that rij > rc at t+ ∆t,
for some reasonable ∆t. The Verlet list and The Cell list algorithms described
by Frenkel & Smit (1996)[5] are based on this assumption - that there is often
no need to even check rij.

5.2.1 Verlet list

In Verlet list, a second radius rv > rc is used, encapsulating all of the potential
candidates for force calculation in the near future. This annulus centered at
particle i

{rj : rc < rij < rv} ,
consists of all the particles which are not currently contributing to the force,
but may at the next time step. All particles inside this set will be checked.
For every particle i, the particles inside the sphere

{rj : rij < rv}

are noted as possible contributors to the force Fi in the near future. For a
system of N particles, this information can be represented as a symmetric
N×N binary matrix A with entries aij=1 if rij < rv, and aij = 0 otherwise.
As self interactions are not considered, the diagonal entries aii = 0 also.
Since A is symmetric, and typically pairwise forces fij and fji are computed
at the same time, A can be re-written as an upper triangular matrix to save
space. Hence, during simulation, rij ≤ rc is only checked if aij = 1, otherwise
we can safely assume that rij > rc and (in the case of LJ) F ∗LJ = 0. This list
need not be updated every time step (and would not be worthwhile if it was),
it is more typical to update the list every M∆t, where typically M = 10 or
100. Clearly based on this, rv must be picked such that

rv − rc > vmaxM∆t

where vmax is the maximum possible velocity of any particle in the system, to
avoid any particle j not included in the list becoming a distance < rc from a
particle i, resulting in the corresponding force between them being (wrongly)
ignored. The Verlet list scales as O(N2), which is actually the same as not
using it, but is worthwhile due to its key advantage that it does not need to
be updated every time step.

Advanced methods 29

5.2.2 Verlet list for a periodic system

The Verlet list can be effectively extended into PBC with little hassle. Con-
sidering the pairwise forces Fij(rij) acting on a particle i in a periodic system

Fi =
N∑
j=1

boxes∑
n

′Fij(ri − [rj + nL]). (22)

After a small amount of thought, the symmetry of the periodicity gives the
relationship

Fij(ri−[rj+nL]) = Fij([ri−nL]−rj) = −Fij([rj+nL]−ri) = −Fij(rj−[ri−nL]),

using this result we can re-write (22) as

Fi =
N∑
j=1

boxes∑
n

′Fij([ri + nL]− rj).

This means that the summation has been changed - instead of computing rij
for each j in every neighboring box n, we now compare each j in the central
box with its nearest image of i. Hence we can construct a different Verlet list
for each particle i, and will only need to consider all particles j that interact
with i, but more importantly, these will only be particles in the central box -
so the list will be much smaller. This makes this seemingly minor adjustment
to (22) worthwhile.

5.2.3 Cell list and comparison with Verlet list

Similar in principle to Verlet list, the cell list method divides the central
box into sub-boxes of length Lsub−box > rc. For a particle i in a sub-box, rij
is only tested for particles j in the neighboring sub-boxes. This operation
scales as O(N). Frenkel & Smit (1996)[5] compares the two methods, for a
system of number density ρ the number of particles for which rij must be
calculated in the Verlet list is given by

NV erlet =
4

3
πρr3

v

where the equation for a sphere has been used. Similarly the number of
particles considered for the cell list is given by

NCell = 27ρr3
c .

30 Ewald summation

So the most effective method will depend on which parameters are chosen.
Many computer simulations use a combination of both Verlet and cell lists;
Auerbach et al. (1987)[15] used the Verlet list to avoid large numbers of
particle considerations, whilst using the cell list method to construct this
Verlet list.

5.3 Ewald summation

For a system in which periodic boundary conditions are used, problems may
arise where the cutoff radius rc of a long range potential such as coulomb
potential Uc, is large enough such that the number of periodic boxes must be
very large. In these situations, the Ewald method can be used to reduce the
computation cost. The basic idea behind it is to replace the point charges
of the system with a set of Gaussian distributions. The following derivation
is adapted from that of Frenkel & Smit (1996)[5]. Considering the charged
interactions of a system under PBC,

Uc =
1

4πε0εr

∑
n

N−1∑
i=1

N∑
j=i+1

′ qiqj
|ri − [rj + nL]|

. (23)

The Ewald summation will convert the formulation of Uc into one which
converges faster, and absolutely. A particle i in the periodic system has an
electric field, given by

φi(r) =
1

4πε0εr

∑
n

qi
|r− [ri + nL]|

. (24)

For convenience we now drop the constant term preceding the summation, as
this will not effect the result. The Ewald summation collects these fields as a
collection of point charges. We start by considering a compensating Gaussian
charge cloud surrounding individual terms, which in general is given by

ρG(r) = −qi
(α
π

)3/2

e−αr
2

where r is the particle separation, α will be determined later on, and must
be selected carefully to split real space and reciprocal space. Firstly the
continuous background charge is computed, by considering the sum of these
Gaussians;

ρL(r) =
∑
n

N∑
j=1

qj

(α
π

)3/2

e−α|r−(rj+nL)|2 .

Advanced methods 31

We now seek the solution to the following Poisson’s equation in order to
compute the corresponding total electrostatic potential

−∇2φL(r) = 4πρL(r). (25)

Next we take the Fourier transform of ρ1(r), where k is the corresponding
reciprocal space vector and V = L3 is the volume, giving

ρ̂L(k) =
1

V

∫
V

e−ik·r
∑
n

N∑
j=1

qj

(α
π

)3/2

e−α|r−(rj+nL)|2dr

=
1

V

N∑
j=1

qje
−ik·re−k

2/4α,

which can be subbed into the Fourier form of (25), where k2 = k ·k, to yield

φ̂L(k) =
4π

V k2

N∑
j=1

qje
−ik·rek

2/4α.

It conveniently follows that in computation the k = 0 term can be ignored.
Taking the inverse Fourier transform, we now convert back to real space,

φL(r) =
1

V

∑
k 6=0

N∑
j=1

4πqj
k2

eik·(r−rj)e−k
2/4α

and the long range potential becomes8

UL =
∑
k 6=0

N−1∑
i=1

N∑
j=i+1

4πqiqj
k2

eik·(ri−rj)e−k
2/4α. (26)

The current energy formulation UL includes a self-interaction term, due to
the point charge qi and its own corresponding Gaussian charge cloud

ρG(r) = qi

(α
π

)3/2

e−αr
2

,

which must be calculated and subtracted. Frenkel & Smit (1996)[5] shows
this term to be

Uself =
(α
π

)1/2
N∑
i=1

qi
2. (27)

8Note the slight abuse of notation which starts in equation (26), where we take i =
√
−1

but when used as a subscript or index in a sum, i still represents the index of the particle
we are currently summing.

32 Ewald summation

The above does not contain any ri terms, making it conveniently constant
throughout simulation. Hence, (27) only needs to be calculated once. Finally,
we can compute the comparatively simple short range interactions, where we
make use of the error function erf(x) and its complementary error function
erfc(x), defined as

erf(x) =
2√
π

∫ x

0

e−s
2

ds, erfc(x) = 1− erf(x) = 1− 2√
π

∫ x

0

e−s
2

ds.

It follows that the solution to Poisson’s equation for ρG(r) becomes

φG(r) =
qi
r

erf(
√
αr)

and using this, φs(r) can be simply defined (compensating for its error term)
as

φs (r) =
qi
r
− qi
r

erf
(√

αr
)

=
qi
r

erfc
(√

αr
)
.

The total short range contribution is therefore given by

Us =
N−1∑
i=1

N∑
j=i+1

qiqjerfc(
√
αrij). (28)

Finally, combining the real space (28) and reciprocal space (26) terms, and
subtracting the error and self interaction terms (27) gives the result

Uc = Us + UL − Uself

=
N−1∑
i=1

N∑
j=i+1

qiqjerfc(
√
αrij) +

∑
k 6=0

N−1∑
i=1

N∑
j=i+1

4πqiqj
k2

eik·(ri−rj)e−k
2/4α

−
(α
π

)1/2
N∑
i=1

qi
2. (29)

The finer details of this derivation are omitted, but can be found in Frenkel
& Smit (1996)[5]. A faster but less intuitive derivation is available from Le

& Cai (2009)[16]. After all, it is not the derivation, but the result that we
are interested in. The charged version of the self-healing model discussed
in §6 actually uses ‘Particle-particle/particle-mesh’ (P3M), a more advanced
version of the above method. This method computes short range interactions
directly whilst long range interactions are computed by solving the discrete
Poisson equation on a mesh. It scales at O(N logN) which for large systems
is less expensive than the regular Ewald, which has cost O(N3/2).

Advanced methods 33

5.4 Fast Fourier transform

To compute the Fourier transform in the Ewald method, we use a version of
the fast Fourier transform. The following description is based on pages from
Benson (2008)[17], where the explanation is within the context of digitizing
audio in modern music software9, but the process is essentially the same.
This description is only in one dimension, but can simply be extended to the
3 dimensional real and reciprocal space by replacing the product of the real
and reciprocal variables rk in the exponential term by the dot product r · k.
A function f(r) is discretized after firstly multiplying by a series of Dirac
delta functions

δs(r) =
∞∑

n=−∞

δ(r − n∆r),

yielding

δs(r)f(r) =
∞∑

n=−∞

δ(r − n∆r)f(r)

=
∞∑

n=−∞

δ(r − n∆r)f(n∆r),

where the simplification is a result of each delta function equal to zero at
every point other than n∆r. By definition, after integrating over (−∞,∞)
the Fourier transform of δs(r)f(r) becomes

ˆδsf(υ) =
∞∑

n=−∞

f(n∆r)e−2πiυn∆r.

We take the Fourier transform to be over a sufficiently wide range of length
M and index such that f(r) = 0 unless 0 ≤ n < M , rewriting as

ˆδsf(υ) =
M−1∑
n=0

f(n∆r)e−2πiυn∆r.

There are M pieces of information here, which must be evaluated at points
υ = k

M∆r
, for k = 0, . . .M . The discrete Fourier transform is therefore

9In the digital Fourier transform of audio data, the frequency represents the number
of sounds-per-second (the samplerate) that we hear. Typically for an audio CD this value
is 44.1kHz - this has been the case since this it was agreed on by Sony and Phillips in
1980. This corresponds to 74 minutes worth of audio; which was extended from 60 minutes
after both companies agreed that the CD should be large enough to encompass a full (74
minute) version of Beethovens 9th Symphony (Password 2001)[18]

34 Multiple-tau auto-correlation function

defined as

F (k) = ˆδsf(
k

M∆r
) =

M−1∑
n=0

f(n∆r)e−2πikn/M .

However, it follows that during calculation many values are calculated twice.
The fast Fourier transform takes advantage of this. Suppose that M is even,
we can split the sum of F into even (left) and odd (right) components

F (k) = Feven(k) + Fodd(k)

=

M
2
−1∑

n=0

f((2n)∆r)e−2πi(2n)k/M +

M
2
−1∑

n=0

f((2n+ 1)∆r)e−2πi(2n+1)k/M .

By inspection it is clear that the contributions to F (k) and F (k + M
2

) are
closely related. Comparing with the above,

F (k +
M

2
) =

M
2
−1∑

n=0

f((2n)∆r)e−2πi(2n)(k+ M
2

)/M +

M
2
−1∑

n=0

f((2n+ 1)∆r)e−2πi(2n+1)(k+ M
2

)/M

F (k +
M

2
) =

M
2
−1∑

n=0

f((2n)∆r)e−2πi(2n)k/Me−πi(2n)

+

M
2
−1∑

n=0

f((2n+ 1)∆r)e−2πi(2n+1)(k)/Me−πi(2n+1)

F (k +
M

2
) =

M
2
−1∑

n=0

f((2n)∆r)e−2πi(2n)k/M · 1 +

M
2
−1∑

n=0

f((2n+ 1)∆r)e−2πi(2n+1)(k)/M · −1

= Feven(k)− Fodd(k).

Hence, the ‘trick’ with the fast Fourier transform is taking advantage of the fact
that

Feven(k +
M

2
) + Fodd(k +

M

2
) = Feven(k)− Fodd(k).

If M is a power of 2, FFT can compute the above in 2M log2M operations, instead
of the less efficient M2 through systematic computation. The model discussed in
§6 actually uses FFTW (Fastest Fourier Transform in the West) which considers
a wider range of options (such as the above) to reduce computation time.

5.5 Multiple-tau auto-correlation function

In the self-healing simulations, we will aim to calculate the stress autocorrelation
function G(t), in particular the component of the form 〈σ(t0)σ(t− t0)〉. This com-
ponent is incredibly noisy, due to fluctuations caused by bond vibrations. For

Advanced methods 35

now we will not concern ourselves with what this component represents, instead
the focus lies on finding an efficient method to compute it. The Multiple-τ is
a very effective method for computing average correlations over large ranges by
making use of the averages already taken from shorter ranges, significantly im-
proving prediction accuracy and allowing the calculation of quantities such as the
stress modulus G(t) to be performed on-the-fly. Aside from stress calculations,
autocorrelation functions have a wide range of applications in modern technology,
for finding hidden harmonic frequencies in a signal or repeated patterns in a large
sample of data10.

As described by Ramı́rez et al. (2010)[19], the data for the correlation must be
stored in a hierarchy of S levels, each consisting of three data arrays of size p plus
an accumulator. Each level correlates over a larger interval than the one before
it, using information from the level below. Due to this, there will be less samples
over the wider intervals, so the resolution of the correlation will decrease as (t− t0)
increases. The three arrays on each level consist of the following:

• Dij , which stores the sampled data at lag j on level i

• Cij , which accumulates values of Di0Dij (equivalent to 〈σ(t0)σ(t− t0)〉) for
each lag j.

• Nij is the counter for this correlation and increases by 1 each time a value
is added to the accumulation of Cij .

This process starts at level i = 1, and continues until i = S, and on each level the
lag starts at level j = 1, until j = p. Each time a new data value ωi is added to
the accumulator level i, an accumulator counter Mi for that level is also increased
by 1. Once the accumulation is complete, ωi+1 = Ai/Mi is sent to the level i+ 1,
and the process repeats at a higher level, correlating over a wider range. Data will
continue to accumulate at level i and sent to i + 1 until all of the data has been
successfully auto-correlated, when the average at level i = S has been computed.

10Auto-correlation is a method made use of by oil companies - in short the method used
is to send seismic waves through the ground and record the reflections, which can then
be auto-correlated to form an underground map to help uncover potential drilling sites.
Andy Hildebrand was able to retire at 40 due to this money saving technique, and then
went on to use auto-correlation to create the controversial auto-tuning algorithm, which is
now being used more and more frequently in live popular music performances (Tyrangiel
2009)[20].

36

6 Modelling self-healing polymer networks

Figure 9: Snapshot of the infinite network formed by Cordier’s polymers.
The central image (inside the blue box) has been repeated periodically.

Sufficient methods have now been introduced to model the self-healing polymer
networks - combining almost everything that has been discussed so far. This
section will explain the model and the theory used to obtain and analyze the
simulation results, specifically the stress modulus and the cluster analysis. Finally
these characteristics and others are compared between different simulation results.
Parts of the code for these simulations can be found in appendix B.

Modelling self-healing polymer networks 37

6.1 The model

Our simulations are initialized as a polymer melt, where the linear polymers are in
liquid state with no additional solvent. If the polymers are of sufficient length, this
melt will demonstrate a visco-elastic property. This behaves as an elastic solid on
a short time scale, whilst behaving as a viscous liquid at larger time scales. With
the added association of attractive or charged monomers, the polymers can form
a reversible network - similar to rubber. The base code for the simulation is
designed to model two types of polymer, which we denote type-X and type-Y .
These can each have varying charges or attractive monomers distributed along
their backbone. Lennard-Jones cutoff rc and potential depth ε vary depending
on the monomer; for certain interactions we desire an attractive tail. This tail
is set such that it only attracts a certain type of monomer. Typically we have a
long range LJ attraction (rc = 2.5, ε = 3) between type X-Y attractive monomer
interactions, but all X-X and Y -Y interactions remain purely repulsive (rc = 21/6,
ε = 1). We have

N = NXPX +NY PY ,

where N is the total number of particles, NX and NY are the number of monomers
in the X-type and Y -type chains, whilst PX and PY are the number of X-type
and Y -type polymer chains respectively. We typically choose these polymer pa-
rameters specifically with an attractive (this attraction could be electrostatic or
LJ) monomer at either end, and an even distribution of attractive monomers along
it. Hence the equation

Np − 1
Np,attractive − 1

= dp + 1 i = X or Y

must be satisfied, where dp ∈ N is the number of monomers in the chain type p,
between each pair of attractive monomers. On top of this, the number of positively
and negatively charged monomers is chosen carefully to ensure that the net charge
of the system is zero;

N∑
i=1

qi = 0.

Similarly, we choose NX,attractivePX = NY,attractivePY . The model automatically
determines the simulation box volume as V = N/ρ, where we choose the number
density of each system to be ρ = 0.85 - representing a polymer melt. As in §4,
we take our fundamental units of mass, energy and length to be m = ε = σ = 1
respectively, similarly we choose our FENE constants κ = 30, R0 = 1.5. We choose
a warm up period (§5.1) until rfc = 0.8σ, and allow the simulation to run for
certain length of time before data is recorded. This will allow time for the forces
not considered during warm up to be introduced to the system. P3M (§5.3) is
used to calculate charged forces, whilst all non-bonded forces are considered under
periodic boundary conditions (§3.3). For LJ cutoff we use a combination of Verlet

38 The stress modulus

list and cell list (§5.2.1) where we ensure our sub-box length l > rc. Considering
certain simulations will use multiple values for rc - it is important that the largest
of these is compared with sub-box length. Hence the general form of our equation
of motion, including frictional and noise terms (§2.4) can be written as

Fi = − 30

[
(ri − ri+1)

1
1− (ri,i+1

R0
)2

+ (ri − ri−1)
1

1− (ri,i−1

R0
)2

]

+ 24
∑
n

N∑
j=1

′εij(ri − [rj + nL])

[
2

|ri − [rj + nL]|14 −
1

|ri − [rj + nL]|8

]∗

− qi
4πε0εr

∑
n

N∑
j=1

′(ri − [rj + nL])
qj

|ri − [rj + nL]|3
− γṙi +Wi.

Again, this equation does not tell the whole story - but it is the most mathematical
way of writing the equation of motion. The first line only applies to particles in the
same chain as i, and if i is the last or first term in the chain then the left hand or
right hand term must be dropped. On top of this, the LJ truncation in the second
line (represented by ∗) will vary depending on the particles considered, as will
εij . The two quantities that will contribute mostly to the strength of the network
formation are εr and ε, the latter of which will only contribute to association for
particles with rc > 2

1
6 . These associative monomers are often described as ‘sticky’

monomers. The instantaneous stress and average functionality of each polymer in
the resulting polymer network is computed on-the-fly; the theory behind these is
discussed next.

6.2 The stress modulus

Typically in mechanics, stress is defined as the change in force responding to a
deformation of the system. In our molecular dynamics simulations, we compute
the stress autocorrelation function, defined as

G(t) :=
V

kBT
〈ϕαβ(t+ t0)ϕαβ(t0)〉 (30)

(Zhou & Larson 2006)[21]. Here, α and β are taken to be each of x, y, z directions
for the average. Interestingly it is not necessary to deform the system to measure
this relaxation G(t); by the fluctuation dissipation theorem we can link fluctuations
in equilibrium with forced perturbations from equilibrium - hence we are able to
plot the relaxation G(t) based on data taken whilst the system is in equilibrium.
Every possible t0 is considered for the average, to gain the smoothest possible
correlation. ϕαβ represents the shear stress, which is defined as

ϕαβ =
1
V

− N∑
i=0

mivαivβi −
N−1∑
i=0

N∑
j=i+1

rαijrβijFij
|rij |

 , (31)

Modelling self-healing polymer networks 39

which can be physically interpreted as the α directional component of the force
over a cross sectional area normal to β. Winkler (2002)[22] derives (31) after
dividing the force by the volume and multiplying by one direction (hence we are
instead dividing by a single plane), and then summing over all particles, in each
plane. The resulting stress moduli are stored on-the-fly in the form of the stress
tensor

ϕ =

 ϕxx ϕxy ϕxz
ϕyx ϕyy ϕyz
ϕzx ϕzy ϕzz

 . (32)

The diagonal entries correspond to the pressure calculation, which are typically
much larger than the non-diagonal entries. Theoretically, the matrix should be
symmetric, as one excepts that ϕαβ = ϕβα. The average ϕαβ are taken for each
x, y, z, not including the diagonal (pressure) entries. The curve of the resulting
stress modulus over a single interval [t0, t] is very noisy, so unlike most quantities
which only need to be recorded every 100∆t or so, it is necessary to record the
values of ϕ at every time step. Once the simulation is complete, the results of
the stress tensor (32) are correlated using the multiple Tau correlator (discussed
in §5.5) and then used to effectively compute the stress modulus G(t), which will
give a physical insight into the relaxation of the polymer system after deformation.

6.2.1 The Ewald problem

For a charged system using the Ewald method, a problem arises due to the form of
the Ewald equation (29); the long range interactions are not calculated pairwise.
Hence, it is impossible to find Fij , used in (31) to calculate the stress modulus from
the expression for G(t) given in (30). It would seem that such an equation should
exist, as it is purely the form of equation (29) which is preventing the calculation -
in a small closed system the charges could all be calculated pairwise, and the stress
could be calculated. In fact, a method has been derived by Winkler (2002)[22] to
calculate the diagonal elements (pressure) of the stress tensor in conjunction with
the Ewald method, but it seems there exists no method for the remaining elements
of the matrix - at least for our P3M method. Furthermore, as discussed by Cao
& Likhtman (2010)[23], in certain cases the stress tensor is proportional to the
orientation tensor - where the orientation tensor of a polymer j is defined as

Oj,αβ =
n∑

i=0, on j

r̄iαr̄iβ,

where the notation defined in §4.4 is used. However, the reasoning behind this
proportionality is still somewhat unclear, and further experimentation would be
required before the theory could be applied to a charged system. Rather than
attempting to derive a formula which will calculate the stress of Burattini’s π-
π system, we simply adopt a different model - one more similar to that used to
model Cordier’s polymers - consisting of only U∗LJ and UFene. Hence, the charged

40 Network analysis

monomers are replaced by monomers with an attractive LJ tail. Coincidently, the
University of Reading chemistry department now suggest that the association of
Burattini’s self-healing polymers is driven by short-ranged, non-electrical interac-
tions; it may follow that this model is more effective after all. The model we have
created is still capable of modelling charged systems - regrettably we do not make
full use of this in the simulations that follow.

6.3 Network analysis

To analyze the network formed by the associativity of the polymers, we compute
the M × M binary adjacency matrix A, corresponding to the system of M =
PX + PY polymers. We introduce the cluster cutoff rnc (typically 1.5) and the
elements amn of the matrix are formed from the condition

amn =


1, m 6= n & ∃ i, j,n : |ri − [rj + nL]| < rnc, i and j ‘associating’,
1, m = n,
0, otherwise,

where i and j are monomers on polymer m and n respectively. Hence two linked
polymers are represented by a ‘1’ in A. Naturally, if polymers m and n are linked,
it will follow that n and m are linked - so A must be symmetric11. To effectively
analyze the network, every polymer is considered to be linked with itself. To
determine the strength of our network, we will compute the functionality f of
the associative monomers - which is the average number of other monomers that
each associative monomer is associating with. Another quantity of interest is the
cluster size, which is the number of polymers in each disjoint network. To compute
the size of each disjoint cluster (the sum of these must equal M), we reduce A by
merging columns n and j that share a 1 (the choice of rows or columns is arbitrary
by the symmetry of A), written mathematically as

a∗mn =
{

max(amn, amj), ∃ i : ain = aij = 1,
amn, otherwise.

Physically this means that if the polymers represented by columns j and n are
both linked to a polymer i, then j and n are at least linked indirectly, via i - it
follows that they are in the same cluster. Therefore, any polymer linked to j is
also linked to n, the columns are then merged; they now share connections. In
computation, the algorithm tries each possible j for each n, and the column n is
then removed after merging with column j. Continuing this process will result in
an M × C matrix A∗ where C is the number of disjoint clusters in the system.

11In fact, polymers in the same cluster network can be treated as an equivalence relation.
Even if they are not related directly, they are linked by some number of polymers between
them (transitivity). Furthermore, each polymer is related to itself (reflexivity) and A is
symmetric (symmetry).

Modelling self-healing polymer networks 41

Furthermore, the sum of the entries in each column represents the number of poly-
mers in each cluster. In computation this data is recorded on-the-fly to an array of
size M . After simulation, this can be plotted as a representation of the probability
of the distribution of the polymers amongst clusters of the system. When written
mathematically the process may seem more complicated than it actually is, the
following example demonstrates the idea on a basic level.

6.3.1 Example: Adjacency matrix of a simple system

Figure 10: Mapping the topology of a polymer system to a network.

Consider the system of 5 polymers represented by figure 6.3.1. The polymers
are indexed from 1 to 5, and the circles represent attractive monomers whose
separation rij < rnc and are considered to be associating. The graph represents the
network formed between the associating polymers. The corresponding adjacency
matrix A is binary and symmetric, and is given by

A =


1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 1
0 0 0 1 1


where each entry ‘1’ represents an association. This can be reduced to represent
individual clusters using the method described in §6.3, yielding

A∗ =


1 0
1 0
0 1
0 1
0 1

 .

Notice how polymer 3 and 5 are now ‘connected’, based on their indirect con-
nection via polymer 4. The columns of the matrix can be summed, yielding the
result (which was actually fairly clear from the diagram) of 2 disjoint clusters, one
consisting of 2 polymers and the other consisting of 3.

42 Self-healing polymer networks

6.4 Self-healing polymer networks

We analyze the results of 3 simulations, under the following parameters:

• Cordier’s polymers are simulated with NX = NY = 17, PX = PY = 100,
with associative monomers at the end of each chain (dX = dY = 15), to
represent the hydrogen bonding. Notice the symmetry of this simulation,
any result applied to an X-type polymer should also apply to a Y-type
polymer.

• Burattini’s rubber is simulated with NX = 36, NY = 9, PX = 20, PY = 80,
with dX = 4, dY = 7 - modelling the π-π stacking between diimide groups
and pyrenyl units. Relatively, there are more associative monomers in this
simulation than Cordier’s, whilst the total number of monomers N in the
central box is halved.

• The neutral polymer melt consists of NX = NY = 17, PX = PY = 100, with
no associative monomers. It is worth noting that this is the same as Cordier’s
polymers but without association and is therefore a useful comparison.

We aim to compare the topology and the strength of the networks formed in these
simulations.

Using the methods described in §6.3 and taking rnc = 1.5, we produce the cluster
network distribution formed by the 2 self-healing polymer simulations. Clearly the
polymer melt will have no associating monomers, so it will not form clusters. Data
is taken after 104∆t to allow time for equilibrium, and over a period of 105∆t -
recording relevant information every 100∆t.

Modelling self-healing polymer networks 43

6.4.1 Cordier’s network

Figure 11: Normalized distribution of clusters in Cordier’s network.

Figure 11 strongly suggests that of the 200 polymers modeled in the central box,
the most likely network consists of 195 polymers in one cluster, and 5 disjoint
clusters consisting of one polymer each. As the peaks on the graph are very thin,
it would seem that this is often the case. Something that must be considered; this
data suggests that the most likely cluster size is 195 polymers, based on a system of
200 polymers. However, in a system of 400 polymers we would not expect 2 disjoint
clusters of 195 polymers each - instead it seems more likely that roughly 97.5% of
the polymers in the system will be in the same network. Qualitative evidence to
suggest this can be gained from figure 9 - clearly the cluster is connected to itself
via the periodic boundary conditions; the network passes through opposite faces
of the simulation box, forming a percolated network. Therefore, if we consider any
number of repeated images of the central box, this would still represent a network
in which 97.5% of the polymers are connected.

44 Self-healing polymer networks

6.4.2 Burattini’s network

Under exactly the same conditions as Cordier’s network, we compute the cluster
distribution for Burattini’s network.

Figure 12: Cluster distribution for Burattini’s network

Figure 12 seems to exhibit a larger distribution of polymers that are not associating
with any others. One reason for this may arise from the nature of the compact
clusters resulting from associations. This will make it harder for smaller clusters
to associate with each other and form large clusters, as there will be a greater
separation between clusters than in Cordier’s case. It is still reasonable to assume
that an infinite network is formed, as clearly most of the polymers lie in one large
cluster. Notice that the right hand peak is wider than exhibited by Cordier’s
rubber in figure 11, suggesting more regular fluctuations in cluster size (although
the horizontal axis scale is only half as long).

Modelling self-healing polymer networks 45

Figure 13: Cluster size of both types of Burattini’s polymers. The result has
been normalized for clarity, as PX 6= PY .

To determine the contributions of each polymer type to the left hand peak of figure
12, we compute the individual cluster contributions over the same sample. To do
so, when summing the columns of the adjacency matrix A∗, we sum the first PX
rows into one array, and the the remaining PY rows into a second. From figure 13
it is clear that all of the X-type polymers lie in one large cluster, whilst many of
the Y-type polymers are not associating with this cluster. It would be beneficial to
test this network formation over a larger sample of data, as this may give different
results, allowing the Y-type chains longer to associate with the X-type chains in
the cluster.

46 Functionality results

6.5 Functionality results

Figure 14: Functionality distribution f of both polymer networks

We consider the functionality of both systems displayed in figure 14, taken over
the same sample of data as the cluster network distributions. This distribution
suggests that in Cordier’s network, most sticky monomers are associating with 2 or
3 others, whilst in Burattini’s case, most sticky monomers are only associating with
1 other. Burattini’s network exhibits a higher number of sticky monomers which
are not associating, which seems logical based on the cluster distribution - many
Y-type polymers are disjoint from the main cluster. As Cordier’s network exhibits
a higher average functionality, this suggests a stronger network than Burattini’s.
This result is compared with the stress modulus (an alternative measure of network
strength) in §6.7.

Modelling self-healing polymer networks 47

6.6 Diffusion results

Using the coordinate data written out during simulation, we compute the mean
squared displacement of the individual monomers. The mean squared displacement
of the entire chain follows the relationship

6(t− t0)D =
〈
|r(t− t0)− r(t0)|2

〉
,

where D is the diffusion coefficient of the chain (Frenkel & Smit 1996)[5].

Figure 15: Graph of the mean squared displacement of both self-healing
polymer networks compared with a neutral polymer melt.

The results in figure 15 suggest a more rapid diffusion in the polymer melt case,
which is to be expected as the attractive monomers will restrict diffusion in the
self-healing cases. Burattini’s polymers are shown to diffuse faster than Corder’s.
This is most likely due to the larger number of polymers in Burattini’s system
which are not associated with the main cluster - these are free to diffuse faster,
which pulls up the average value. Whilst there is not a sufficient sign of a plateau
in the self-healing case, there is perhaps some evidence of a limit in Burattini’s
polymers. It could be that this limit will become clear at a later stage, but the
diffusion has clearly not reached its limit in the sample taken; a larger sample must
be taken before conclusions can be drawn. This limit would represent a restriction
on the space in which individual monomers are able to move, imposed by the

48 Stress modulus results

connection of certain monomers in the chain to other polymers inside the main
cluster. Alternatively we could restrict our calculations to only the largest cluster,
thus avoiding contributions from these smaller, fast-moving polymers which have
not associated with this main cluster.

6.7 Stress modulus results

In each simulation, we compute the stress auto-correlation function using the
multiple-τ correlator. Due to time and hardware constraints it is not always pos-
sible to take sufficient statistical data to obtain a smooth correlation - in this case
the data was taken over 107∆t of each simulation.

Figure 16: G(t) of each simulation.

Figure 16 suggests that the self-healing polymers have a slower relaxation than
the polymer melt case, as would be expected for a more complicated network.
Note specifically that the only difference between the polymer melt and Cordier’s
rubber is the attractive LJ-tail of the end monomers on the 17 monomer chain.
Furthermore, the polymers of both Burattini and Cordier relax similarly, despite
Cordier’s network having a higher functionality. This contradicts the theoretical
predictions of the ideal case - Rubinstein & Colby (2003)[9] describes a ‘phantom
model’ of ideal chains, predicted to satisfy

G =
NkBT (f − 2)

fV
.

Modelling self-healing polymer networks 49

The relationship between the functionality f and the stress modulus G of our real
chains is clearly more complex, due to the additional constraint of excluded vol-
ume. Considering the data for G(t) was taken over a much wider range than for
functionality f , Burattini’s network may become stronger over this time, result-
ing in this behavior similar to Cordier’s. As G(t) represents the time taken to
reach equilibrium from a deformation, it would be interesting to investigate the
relationship between G(t) and the healing time after a (macroscopic) cut in the
material. To verify this would require more complex simulations, it would again
be beneficial to restrict our calculations to the largest cluster.

6.8 Summary

Using the MD simulation model created, we have results that show a polymer
network formed by both types of self-healing polymer - with an infinite network
formed in both cases. The relaxation time for these self-healing polymers is sig-
nificantly longer than that of the polymer melt. We have tested the strength of
self-healing networks of non-ideal chains through comparison between the stress
modulus and functionality. Further experimentation could involve simulating a cut
in the system, and recalculating the stress modulus - as Burattini et al. (2010)[3]

claim their elastic modulus decreases to 95% after the cut. It is also necessary to
run these simulations over a much wider range to obtain more reliable results, in
particular to compare the functionality with the stress modulus more effectively.
It would be interesting to see if the diffusion rate would also reach a limit in this
larger interval, as the network should restrict movement of the monomers within
it. The model developed has many applications, and is capable of modelling a
far wider range of polymers than those discussed here. However, as is always the
case with computational science - for these results to be considered reliable, it is
necessary to run the simulation over a period of months, even years.

50 REFERENCES

References

[1] White, S.R et al. Autonomic healing of polymer composites Nature,
vol. 409, 2001 pp. 794-797

[2] Cordier et al. Self-healing and thermorevsersible rubber from
supramolecular assembly, Nature, vol. 451, 2008, pp. 977

[3] Burattini et al, ‘A healable supramolecular polymer blend based on
aromatic π-π stacking and hydrogen-bonding interactions’, Journal
of the American chemical society, Vol. 132, 2010, pp.12051-12058.

[4] Allen, M.P & Tildesley, D.J 1987, Computer Simulation of Liquids,
Oxford University Press, New York

[5] Frenkel, D & Smit, B 1996,Understanding Molecular Simulation,
Academic Press, United States

[6] Atomistic Computer Modeling of Materials, Lecture
15: Molecular Dynamics video lecture recording,
MIT Nicola Marzari, viewed 17th September, 2010
<http://deimos3.apple.com/WebObjects/Core.woa/Feed/mit.edu-
dz.2820710563.02820710565> Massachusetts institute of technology

[7] Kremer, K & Grest, G.S ‘Dynamics of entangled linear poly-
mer melts: A molecular-dynamics simulation’, Journal of chemical
physics, Vol. 92, 1990 pp.5057-5086

[8] Felderhof, B.H 1978 ‘On the derivation of the fluctuation-dissipation
theorem’, Journal of Physics A: Mathematical and General, vol. 11,
No. 5, pp. 921-927

[9] Rubinstein, M & Colby, R.H 2003, Polymer Physics, Oxford Uni-
versity Press, New York

[10] Jackson, J.D 1975 Classical Electrodynamics (Second Edition), John
Wiley & Sons, Inc.

[11] Press et al. Numerical Recipes in C, Second Edition, Cambridge
University Press

[12] Flory, P 1953 Principles of Polymer Chemistry, Cornell University
Press

[13] Helmenstine, A.M 2007 How Diapers Work
& Why They Leak, viewed 20th Marth 2011,
<http://chemistry.about.com/b/2007/02/06/how-diapers-work-
why-they-leak.htm>

http://deimos3.apple.com/WebObjects/Core.woa/Feed/mit.edu-dz.2820710563.02820710565
http://deimos3.apple.com/WebObjects/Core.woa/Feed/mit.edu-dz.2820710563.02820710565
http://deimos3.apple.com/WebObjects/Core.woa/Feed/mit.edu-dz.2820710563.02820710565

REFERENCES 51

[14] Auhl et al. ‘Equilibrium of long chain polymer melts’, The Journal
of chemical physics, vol. 119, No. 24, pp. 12723-12723

[15] Auerbach et al. 1987 ‘Research Article A special purpose parallel
computer for molecular dynamics: motivation, design, implementa-
tion, and application’, Journal of physical chemistry, vol. 91, No.
19, pp. 48814890

[16] Le, H & Cai, W 2009 Ewald Summation for
Coulomb Interactions in a Periodic Supercell,
viewed 07th February 2011, Standford University,
‘http://micro.stanford.edu/mediawiki/images/4/46/Ewald notes.pdf’

[17] Benson, D 2008, Music: a Mathematical Offering, Cambridge Uni-
versity Press, Available online via University of Edinborough

[18] Password 2007, ‘25 years of the compact disc’, viewed 18th march
2011, p.28
<http://www.research.philips.com/downloads/
password/download/password 30.pdf>

[19] Ramı́rez et al. 2010, ‘Efficient on the fly calculation of time correla-
tion functions in computer simulations’Journal of chemical physics,
vol. 133, pp. 154103-1 - 154103-12

[20] Tyrangiel, J 2009, Auto-Tune: Why Pop Music Sounds Perfect,
viewed 10th March 2011,
<http://www.time.com/time/magazine/article/0,9171,1877372,00.html>

[21] Zhou, Q & Larson, R.G 2006 ‘Direct Calculation of the Tube Po-
tential Confining Entangled Polymers’, Macromolecules, vol. 39, No.
19, pp. 67376743

[22] Winkler, R.G 2002 ‘Viral pressure of periodic systems with long
range forces’, The Journal of chemical physics, vol. 117, No. 5,
pp.2449

[23] Cao, J Likhtman, A.E 2010, ‘Time-Dependent Orientation Cou-
pling in Equilibrium Polymer Melts’, American Physical Society,
vol. 104, No. 20, pp. 207801(1-4)

http://micro.stanford.edu/mediawiki/images/4/46/Ewald_notes.pdf
http://www.maths.abdn.ac.uk
http://www.research.philips.com/downloads/password/download/password_30.pdf
http://www.research.philips.com/downloads/password/download/password_30.pdf
http://www.time.com/time/magazine/article/0,9171,1877372,00.html

APPENDICES

Single polymer in solution code 53

A Single polymer in solution code

This code was written in the C. This is the code accompanying most of §4. Many
different versions of it were used, but this is the most general. This code is certainly
not as efficient as it could be, but this lack of elegance makes it easier to follow. The
code uses 3 random number generation functions taken from ‘Numerical Methods
in C’. It produces up to 5 data files, including a .pdb and .xyz file, which can
be loaded into VMD software, available from www.ks.uiuc.edu/Research/vmd/ to
produce a visualization of the simulation.

#inc lude <s t d i o . h>
#inc lude <math . h>
#inc lude <time . h>
#inc lude <windows . h>
#inc lude <s t d l i b . h>
#inc lude <s tdde f . h>// WinApi header
// SINGLE POLYMER IN SOLUTION MOLECULAR DYNAMICS SIMULATION
#inc lude ”random . h”
// de f i n e func t i on s //
void LJ (i n t pi , i n t pj) ;
void Spr (i n t pi , i n t pj) ;
void v e r l e t () ;
double e n d t o e n d () ;
double r a d g y () ;
double r m s a c c e l () ;
double b o n d a v () ;
void KE (i n t dj) ;
double cn (i n t nn) ;
i n t f l a g _ s p r i n g ;
double b o n d a v 2 () ;
void U s p r (i n t pi , i n t pj , i n t dj) ;
void Ulj (i n t pi , i n t pj , i n t dj) ;
// void vmd pdb(i n t p i) ;

long i d u m ; /∗ Seed f o r the random number generator ∗/
long ∗ i d u m P t r = &i d u m ; /∗ Pointer f o r the seed ∗/

/∗ de f i n e g l oba l v a r i a b l e s ∗/
in t N ; //number o f p a r t i c l e s //
double r [1 0 0 0] [3] ;
double v [1 0 0 0] [3] ;
double a [1 0 0 0] [3] ;
double k s p r ; // spr ing constant //
double d e p t h ;
double t ; // the cur rent time in the s imu lat i on
i n t s t e p s ; // t o t a l number o f s t ep s that the program w i l l run f o r
double dt ; // l ength o f each time step //
double rij ; // p a r t i c l e s epa ra t i on between Pi and Pj
double rc ;
double L ; // l ength o f s imu la t i on box
double r0 ;
double s p r c u t o f f ;
double KEt ; // c o r r e c t k i n e t i c energy based on temperature
double U [1 0 0 0 2] [3] ; // bin f o r the po t en t i a l energy every 100 time s t ep s
i n t d ; /∗ the entry in the po t en t i a l array that i s cu r r en t l y being ca l cu l a t ed ∗/

in t m a i n ()
{

i n t i ;
i n t j ;
i n t k=0;
double KEt ; // k i n e t i c energy from temperature
double KEv ;
F I L E ∗ f i l e _ p t r ;
F I L E ∗ f i l e _ p t r 2 ;
F I L E ∗ f i l e _ p t r 3 ;
F I L E ∗ f i l e _ p t r 4 ;
F I L E ∗ f i l e _ p t r 5 ;
double b o n d ; // s epa ra t i on o f ne ighbour ing p a r t i c l e s at s epara t i on
double r2 ;
double m o d r ;
i n t fr ;
i n t rt ;
long s e e d ;

http://www.ks.uiuc.edu/Research/vmd/

54

L=20. ; // l ength o f s imu la t i on box
KEv = 0 . ; // k i n e t i c energy from v e l o c i t i e s
N=30;
t =0.;
dt = 0 .0012 ;
s t e p s =1000000; /∗ t o t a l number o f time s t ep s that the
program w i l l run for , t y p i c a l l y 1 m i l l i o n ∗/
rc=pow (2 , 1/6) ; /∗use 2 .5 as standard with depth /60 er ror ,

2ˆ{1/6} f o r pure ly r e pu l s i v e ∗/
d e p t h =1; // po t en t i a l depth f o r LJ
k s p r =30;
b o n d =1.; // i n i t i a l s epa ra t i on o f ne ighbour ing p a r t i c l e s
r0 =1.5; //maximum legnth o f bonds between p a r t i c l e s
s p r c u t o f f=3∗ s q r t (2) / 2 ;
KEt=1; // k i n e t i c energy o f system
f l a g _ s p r i n g =1; /∗when f l a g =1, en t rop i c spr ing f o r c e i s used

− when f l a g =0,
l i n e a r spr ing f o r c e i s used∗/

//movie makin ’ data : f ramerate and runtime
fr=10;
rt=s t e p s ;
d=0;

// s e t random po s i t i o n s //

p r i n t f (”\nProgram s t a r t − a s s i gn i ng random po s i t i o n s to p a r t i c l e s \n\n”) ;
f o r (i=0; i<N ; i++)// s e t a l l i n i t i a l p a r t i c l e a c c e r l e r a t i o n s to zero
{

a [i] [0]= 0 ;
a [i] [1]= 0 ;
a [i] [2]= 0 ;

}

p r i n t f (”\n !\n”) ;
f o r (i=0; i<N ; i++)
{

v [i] [0] = g a s d e v (i d u m P t r) ;
v [i] [1] = g a s d e v (i d u m P t r) ;
v [i] [2] = g a s d e v (i d u m P t r) ;

/∗ a s s i gn s a smal l random gauss ian v e l o c i t y to p a r t i c l e i in each d i r e c t i o n ∗/
}

r [0] [0] = 0 ;
r [0] [1] = 0 ;
r [0] [2] = 0 ;

p r i n t f (”\n !\n”) ;
f o r (i=1; i<N ; i++)

{
k=0;

r [i] [0] = r a n 2 (i d u m P t r)−0.5;
r [i] [1] = r a n 2 (i d u m P t r)−0.5;
r [i] [2] = r a n 2 (i d u m P t r)−0.5;
// chooses a random number on [−0 . 5 , 0 . 5]

p r i n t f (” Pa r t i c l e %d:% f \ t%f \ t%f \ t\n” , i+1,
r [i] [0] , r [i] [1] , r [i] [2]) ;

m o d r=s q r t ((r [i] [0] ∗ r [i] [0])+ (r [i] [1] ∗ r [i] [1])
+(r [i] [2] ∗ r [i] [2])) ;
i f (m o d r==0){ m o d r =1;}

r [i] [0] = r [i −1] [0] + ((r [i] [0] ∗ b o n d) / m o d r) ;
r [i] [1] = r [i −1] [1] + ((r [i] [1] ∗ b o n d) / m o d r) ;
r [i] [2] = r [i −1] [2] + ((r [i] [2] ∗ b o n d) / m o d r) ;

f o r (j=0; j<i ; j++)
{
rij=((r [i] [0] − r [j] [0]) ∗ (r [i] [0] − r [j] [0]))
+((r [i] [1] − r [j] [1]) ∗ (r [i] [1] − r [j] [1]))
+((r [i] [2] − r [j] [2]) ∗ (r [i] [2] − r [j] [2])) ;
i f (rij <1)

{ p r i n t f (” Pa r t i c l e %d r epo s i t i on ed \n” , i+1);
j=i ;
i=i−1;
k=k+1;
}

i f (k==100)
{

Single polymer in solution code 55

p r i n t f (”\nRandom generat i on f a i l e d , t ry again ”) ;
re turn 0 ;
}

}
}

/∗Write out i n i t i a l Pdb f i l e ∗/
f i l e _ p t r 5 = f o p e n (” Con f in i t . pdb” , ”w”) ;
f o r (i=0; i<N ; i++)
{ f p r i n t f ((f i l e _ p t r 5) , ”%−6s%5d%5s%4s%6d
%8.3 f %8.3 f %8.3 f %6.2 f %6.2 f \n” , ”ATOM ” ,
i+1, ”CAA” , ”POL” , 1 , r [i] [0] , r [i] [1] , r [i] [2] , 1 . 0 , 2 0 . 0 00) ;}

f o r (i=1; i<N ; i++)
{ f p r i n t f ((f i l e _ p t r 5) , ”%−6s%5d%5d\n” , ”CONECT” , i , i+1);}

f p r i n t f (f i l e _ p t r 5 , ”END\n\n”) ;

f c l o s e (f i l e _ p t r 5) ;

f o r (i=0; i<N−1; i++)
/∗ c a l c u l a t e a c c e l e r a t i o n at f i r s t time step based on p a r t i c l e p o s i t i o n s ∗/

{ f o r (j=i+1; j<N ; j++)
{
LJ (i , j) ; // c a l c u l a t e s lennard jones f o r c e between p a r t i c l e i and j .
}

j=i+1;
// only ne ighbour ing p a r t i c l e s are cons ide red f o r bond energy
Spr (i , j) ;
}

f o r (i=0; i<N−1; i++)
{
f o r (k=i+1; k<N ; k++)
{

Ulj (i , k , d) ;
// i n i t i a l LJ po t en t i a l i s c a l cu l a t ed

}

k=i+1;// only ne ighbour ing p a r t i c l e s are cons ide red f o r bond energy

U s p r (i , k , d) ;
}
KE (d) ; // i n i t i a l k i n e t i c energy

p r i n t f (”\n\ n I n i t i a l i z a t i o n complete , s imu la t ion now in prog r e s s ”) ;

f i l e _ p t r = f o p e n (” po s i t i onda ta . txt ” , ”w”) ;
// opens f i l e to record r e s u l t s
f i l e _ p t r 2 = f o p e n (”U(t) e x c e l l d a t a . txt ” , ”w”) ;
f i l e _ p t r 3 = f o p e n (” Ree exce ldata . txt ” , ”w”) ;
f i l e _ p t r 4 = f o p e n (”Conf . xyz” , ”w”) ;

f p r i n t f ((f i l e _ p t r 3) , ”For N=%d\n\n” , N) ;

f o r (j=0; j<=s t e p s ; j++)//main program loop //
{

i f (j==s t e p s /4)
p r i n t f (”\n25%% complete ”) ;
i f (j==s t e p s /2)
p r i n t f (”\n50%% complete ”) ;
i f (j==s t e p s ∗3/4)
p r i n t f (”\n75%% complete ”) ;

// s e l e c t s frames f o r movie :
i f (j%fr==0 && j<rt)
{ f p r i n t f (f i l e _ p t r 4 , ”%d\n” , N) ;

f p r i n t f (f i l e _ p t r 4 , ”%d\n” , j) ;
f o r (i=0; i<N ; i++)
{
f p r i n t f (f i l e _ p t r 4 , ”%10d%15.6 f %15.6 f %15.6 f \n” , 1 , r [i] [0] ,
r [i] [1] , r [i] [2]) ;

}
}

i f (j%20000==0)// i n f o i s only recorded every 2000 time s t ep s
{ t=dt∗j ; // c a l c u l a t e s time e lapsed

f p r i n t f (f i l e _ p t r , ”\n\nt = %.1 f = %ddt\n” , t , j) ;
// r eco rds time to f i l e

f o r (i=0; i<N ; i++)

56

{
f p r i n t f (f i l e _ p t r , ”\ t%.2 f \ t%.2 f \ t%.2 f \n” , r [i] [0] ,
r [i] [1] , r [i] [2]) ;

/∗ r e co rds the po s i t i o n o f each p a r t i c l e i to the
data s t r i n g every 2000 time s t ep s ∗/

}
}

i f (j%(s t e p s /100)==0)
{

f p r i n t f ((f i l e _ p t r 3) , ”%f \n” , e n d t o e n d ()) ;

}

v e r l e t () ;
// c a l c u l a t e s coo rd ina t e s o f p a r t i c l e s f o r next loop //

i f (j<=9998)
{

d++;
f o r (i=0; i<N−1; i++)
{

f o r (k=i+1; k<N ; k++)
{

Ulj (i , k , d) ;
}

k=i+1;
// only ne ighbour ing p a r t i c l e s are cons ide red f o r bond energy

U s p r (i , k , d) ;
}
KE (d) ;

}
}

f p r i n t f (f i l e _ p t r 2 , ”N=%d\ tU l j \ t\ tUspr\ t\tU\ t\tK\n\n” , N) ;

f o r (i=0; i<=d+2; i++)
{
f p r i n t f (f i l e _ p t r 2 , ”%d\ t%f \ t%f \ t%f \ t%f \n” ,
i , U [i] [0] , U [i] [1] , (U [i] [0]+ U [i] [1]) , U [i] [2]) ;
}

f c l o s e (f i l e _ p t r) ;
f c l o s e (f i l e _ p t r 2) ;
f c l o s e (f i l e _ p t r 3) ;
f c l o s e (f i l e _ p t r 4) ;
p r i n t f (”\n\nSimulat ion complete , r e s u l t s s to red \n\n”) ;
B e e p (440 , 1000) ;
B e e p (880 , 1000) ;
// Beeps to s i g n a l the end o f the s imula t i on

return 0 ;
}

void LJ (i n t pi , i n t pj) // c a l c u l a t e s lennard jones f o r c e
{

double rij [3] ;
double r2 ;
double m o d r ;

rij [0]= r [pi] [0] − r [pj] [0] ;
rij [1]= r [pi] [1] − r [pj] [1] ;
rij [2]= r [pi] [2] − r [pj] [2] ;

r2=(rij [0] ∗ rij [0])+(rij [1] ∗ rij [1])+(rij [2] ∗ rij [2]) ;
/∗ square o f d i s t ance o f p a r t i c l e s i and j ∗/

i f (r2<=rc∗ rc)
{

a [pi] [0] = a [pi] [0] + (24∗ d e p t h ∗ rij [0] ∗ ((2 / pow (r2 , 7))−(1/ pow (r2 , 4)))) ;
/∗updates a c c e l e r a t i o n f o r m=1, p a r t i c l e i ∗/
a [pi] [1] = a [pi] [1] + (24∗ d e p t h ∗ rij [1] ∗ ((2 / pow (r2 , 7))−(1/ pow (r2 , 4)))) ;
a [pi] [2] = a [pi] [2] + (24∗ d e p t h ∗ rij [2] ∗ ((2 / pow (r2 , 7))−(1/ pow (r2 , 4)))) ;

i f (pj <(2∗N))
{

a [pj] [0] = a [pj] [0] − (24∗ d e p t h ∗ rij [0] ∗ ((2 / pow (r2 , 7))−(1/ pow (r2 , 4)))) ;
// updates a c c e l e r a t i o n f o r m=1, p a r t i c l e j

a [pj] [1] = a [pj] [1] − (24∗ d e p t h ∗ rij [1] ∗ ((2 / pow (r2 , 7))−(1/ pow (r2 , 4)))) ;
a [pj] [2] = a [pj] [2] − (24∗ d e p t h ∗ rij [2] ∗ ((2 / pow (r2 , 7))−(1/ pow (r2 , 4)))) ;

//no square roo t ing :)

Single polymer in solution code 57

}
}

}

void Spr (i n t pi , i n t pj)
{

double rij [3] ;
double f e n e ;
double m o d r ;

rij [0]= r [pi] [0] − r [pj] [0] ;
rij [1]= r [pi] [1] − r [pj] [1] ;
rij [2]= r [pi] [2] − r [pj] [2] ;

i f (f l a g _ s p r i n g==1)
{ m o d r=s q r t ((rij [0] ∗ rij [0])+(rij [1] ∗ rij [1])+(rij [2] ∗ rij [2])) ;

f e n e = (k s p r ∗ m o d r)/(1−((m o d r / r0)∗ (m o d r / r0))) ;

a [pi] [0] = a [pi] [0] − f e n e ∗ rij [0] ;
// c a l c u l a t e s a c c e l due to spr ing po t en t i a l f o r each i and j , m=1
a [pi] [1] = a [pi] [1] − f e n e ∗ rij [1] ;
a [pi] [2] = a [pi] [2] − f e n e ∗ rij [2] ;

a [pj] [0] = a [pj] [0] + f e n e ∗ rij [0] ;
a [pj] [1] = a [pj] [1] + f e n e ∗ rij [1] ;
a [pj] [2] = a [pj] [2] + f e n e ∗ rij [2] ;
}
e l s e
{
a [pi] [0] = a [pi] [0] − k s p r ∗ rij [0] ; // old s t y l e spr ing po t en t i a l
a [pi] [1] = a [pi] [1] − k s p r ∗ rij [1] ;
a [pi] [2] = a [pi] [2] − k s p r ∗ rij [2] ;

a [pj] [0] = a [pj] [0] + k s p r ∗ rij [0] ;
a [pj] [1] = a [pj] [1] + k s p r ∗ rij [1] ;
a [pj] [2] = a [pj] [2] + k s p r ∗ rij [2] ;
}

}

void v e r l e t ()
{
double rij ;
i n t i ;
i n t j ;

f o r (i=0; i<N ; i++)
{

v [i] [0] = v [i] [0] + (dt ∗0.5∗ a [i] [0]) ;
v [i] [1] = v [i] [1] + (dt ∗0.5∗ a [i] [1]) ;
v [i] [2] = v [i] [2] + (dt ∗0.5∗ a [i] [2]) ;
// s tage 1 : h a l f s tep v e l o c i t y i s c a l cu l a t ed f o r p a r t i c l e i //

r [i] [0] = r [i] [0] + (v [i] [0] ∗ dt) ;
r [i] [1] = r [i] [1] + (v [i] [1] ∗ dt) ;
r [i] [2] = r [i] [2] + (v [i] [2] ∗ dt) ;
// s tage 2 : new po s i t i o n i s c a l cu l a t ed us ing ha l f s tep v e l o c i t y //

}

f o r (i=0; i<(2∗N) ; i++)
/∗ s e t a l l p a r t i c l e a c c e r l e r a t i o n s to zero ,
be f o r e a c c e l e r a t i o n i s r e c a l c u l a t e d ∗/

{
a [i] [0]= 0 ;
a [i] [1]= 0 ;
a [i] [2]= 0 ;
}

f o r (i=0; i<N−1; i++)
/∗ c a l c u l a t e a c c e l e r a t i o n at cur rent time step
based on p a r t i c l e p o s i t i o n s ∗/

{
f o r (j=i+1; j<N ; j++)
{

LJ (i , j) ;
}

j=i+1;// only ne ighbour ing p a r t i c l e s are cons ide red f o r bond energy

Spr (i , j) ;

58

}
/∗ s tage 3 : a c c e l e r a t i o n has been der ived (again)
based on new po s i t i o n s o f p a r t i c l e s ∗/

f o r (i=0; i<N ; i++)
{

v [i] [0] = v [i] [0] + (0 .5∗ dt∗a [i] [0]) ;
}// stage 4 : new v e l o c i t y i s ca l cu la t ed , func t i on i s complete .
}

double r a d g y ()
{
i n t i=0;
double com [3]={0 ,0 ,0} ; // cent r e o f mass
double sum=0;

f o r (i=0; i<N ; i++)
{
com [0] = com [0] + r [i] [0] ;
com [1] = com [1] + r [i] [1] ;
com [2] = com [2] + r [i] [2] ;
}

com [0] = com [0] / N ;
com [1] = com [1] / N ;
com [2] = com [2] / N ; // computes cent r e o f mass ’com ’//

f o r (i=0; i<N ; i++)
{

sum = sum + ((com [0]− r [i] [0]) ∗ (com [0]− r [i] [0]))
+ ((com [1]− r [i] [1]) ∗ (com [1]− r [i] [1]))
+ ((com [2]− r [i] [2]) ∗ (com [2]− r [i] [2])) ;
// adds d i s t ance o f p a r t i c l e from cent re o f mass to sum

}
sum=sum / N ;
r e turn (double) (sum) ; // r e tu rns Rgˆ2

}

double e n d t o e n d ()
{

re turn ((r [0] [0] − r [N −1] [0])∗ (r [0] [0] − r [N − 1] [0]))
+((r [0] [1] − r [N −1] [1])∗ (r [0] [1] − r [N − 1] [1]))
+((r [0] [2] − r [N −1] [2])∗ (r [0] [2] − r [N − 1] [2])) ;

}

void KE (i n t dj)
{

i n t i ;
i n t j ;
double KEv=0; // ac tua l k i n e t i c energy based on v e l o c i t i e s

f o r (i=0; i<N ; i++)
// c a l c u l a t e cur rent k i n e t i c energy , based on random v e l o c i t i e s above//

{
KEv = KEv + (0 . 5∗ ((v [i] [0] ∗ v [i] [0]) +
(v [i] [1] ∗ v [i] [1]) + (v [i] [2] ∗ v [i] [2]))) ;
}

U [dj] [2]= KEv ;
}

double b o n d a v ()
{
double sum=0;
i n t i ;

f o r (i=1; i<N ; i++)
{
sum=sum+s q r t (((r [i] [0] − r [i −1] [0])∗ (r [i] [0] − r [i − 1] [0]))
+ ((r [i] [1] − r [i −1] [1])∗ (r [i] [1] − r [i − 1] [1]))
+ ((r [i] [2] − r [i −1] [2])∗ (r [i] [2] − r [i − 1] [2]))) ;
}

re turn sum /(N−1);
}

double b o n d a v 2 ()
{
double sum=0;
i n t i ;

Single polymer in solution code 59

f o r (i=1; i<N ; i++)
{
sum=sum +(((r [i] [0] − r [i −1] [0])∗ (r [i] [0] − r [i − 1] [0]))
+ ((r [i] [1] − r [i −1] [1])∗ (r [i] [1] − r [i − 1] [1]))
+ ((r [i] [2] − r [i −1] [2])∗ (r [i] [2] − r [i − 1] [2]))) ;
}

re turn sum /(N−1);
}

double cn (i n t nn)
/∗nn i s the number o f p a r t i c l e s away in the
chain the two monomers are from each other ∗/
{
double r i j 2 =0;
i n t i ;
i n t m=0; //number o f bonds being averaged over
double sum=0;

f o r (i=0; i<N ; i++)
{
i f (i+nn<N)
/∗ i f the two p a r t i c l e s are not too f a r
apart to both l i e in the N monomer chain ∗/

{
sum = sum + ((r [i] [0] − r [i+nn] [0]) ∗ (r [i] [0] − r [i+nn] [0]))
+ ((r [i] [1] − r [i+nn] [1]) ∗ (r [i] [1] − r [i+nn] [1]))
+ ((r [i] [2] − r [i+nn] [2]) ∗ (r [i] [2] − r [i+nn] [2])) ;
/∗sums d i s tance between a l l p a i r s o f p a r t i c l e s that are
nn p a r t i c l e s apart in chain ∗/
m++;
}

}
r i j 2 = (double) sum /(nn∗m) ;
r e turn r i j 2 ;
}

double r a n 1 (long ∗ i d u m)
{

i n t j ;
long k ;
s t a t i c long iy=0;
s t a t i c long iv [N T A B] ;
double t e m p ;

i f (∗ i d u m <= 0 | | ! iy) {
i f (−(∗ i d u m) < 1) ∗ i d u m =1;
e l s e ∗ i d u m = −(∗ i d u m) ;
f o r (j=N T A B +7;j>=0;j−−) {

k=(∗ i d u m)/ IQ ;
∗ i d u m=IA ∗(∗ idum−k∗ IQ)−IR∗k ;
i f (∗ i d u m < 0) ∗ i d u m += IM ;
i f (j < N T A B) iv [j] = ∗ i d u m ;

}
iy=iv [0] ;

}
k=(∗ i d u m)/ IQ ;
∗ i d u m=IA ∗(∗ idum−k∗ IQ)−IR∗k ;
i f (∗ i d u m < 0) ∗ i d u m += IM ;
j=iy / N D I V ;
iy=iv [j] ;
iv [j] = ∗ i d u m ;
i f ((t e m p=AM∗ iy) > R N M X) re turn R N M X ;
e l s e re turn t e m p ;

}

double g a s d e v (long ∗ i d u m)
{

// double ran1 (long ∗idum) ;
s t a t i c i n t i s e t =0;
s t a t i c double g s e t ;
double fac , rsq , v1 , v2 ;

i f (i s e t == 0)
{

do {
v1=2.0∗ r a n 2 (i d u m)−1.0;
v2=2.0∗ r a n 2 (i d u m)−1.0;
rsq=v1∗ v1+v2∗ v2 ;

} whi le (rsq >= 1.0 | | rsq == 0 . 0) ;
fac=s q r t (−2.0∗ log (rsq)/ rsq) ;
g s e t=v1∗ fac ;
i s e t =1;

60 Verlet test code

re turn v2∗ fac ;
}
e l s e
{

i s e t =0;
return g s e t ;

}
}

double r a n 2 (long ∗ i d u m)
{

i n t j ;
long k ;
s t a t i c long i d u m 2 =123456789;
s t a t i c long iy=0;
s t a t i c long iv [N T A B] ;
double t e m p ;

i f (∗ i d u m <= 0) {
i f (−(∗ i d u m) < 1) ∗ i d u m =1;
e l s e ∗ i d u m = −(∗ i d u m) ;
i d u m 2=(∗ i d u m) ;
f o r (j=N T A B +7;j>=0;j−−) {

k=(∗ i d u m)/ IQ1 ;
∗ i d u m=IA1 ∗(∗ idum−k∗ IQ1)−k∗ IR1 ;
i f (∗ i d u m < 0) ∗ i d u m += IM1 ;
i f (j < N T A B) iv [j] = ∗ i d u m ;

}
iy=iv [0] ;

}
k=(∗ i d u m)/ IQ1 ;
∗ i d u m=IA1 ∗(∗ idum−k∗ IQ1)−k∗ IR1 ;
i f (∗ i d u m < 0) ∗ i d u m += IM1 ;
k=i d u m 2 / IQ2 ;
i d u m 2=IA2 ∗(idum2−k∗ IQ2)−k∗ IR2 ;
i f (i d u m 2 < 0) i d u m 2 +=IM2 ;
j=iy / N D I V 1 ;
iy=iv [j]− i d u m 2 ;
iv [j] = ∗ i d u m ;
i f (iy < 1) iy += I M M 1 ;
i f ((t e m p=AM1 ∗ iy) > R N M X) re turn R N M X ;
e l s e re turn t e m p ;

}

void Ulj (i n t pi , i n t pj , i n t dj)
{
double Pot=0;
double r2 ;

r2=((r [pi] [0] − r [pj] [0]) ∗ (r [pi] [0] − r [pj] [0]))
+((r [pi] [1] − r [pj] [1]) ∗ (r [pi] [1] − r [pj] [1]))
+((r [pi] [2] − r [pj] [2]) ∗ (r [pi] [2] − r [pj] [2])) ;
i f (r2<(rc∗ rc))

{

Pot=4∗ d e p t h ∗ ((pow (1/ r2 , 6))−(pow (1/ r2 , 3))) + 1 ;
// s h i f t e d f o r cont inuous curve

U [dj] [0]= U [dj] [0]+ Pot ;
}

}

void U s p r (i n t pi , i n t pj , i n t dj)
{
double Pot=0;
double r2 ;

r2=((r [pi] [0] − r [pj] [0]) ∗ (r [pi] [0] − r [pj] [0]))
+((r [pi] [1] − r [pj] [1]) ∗ (r [pi] [1] − r [pj] [1]))
+((r [pi] [2] − r [pj] [2]) ∗ (r [pi] [2] − r [pj] [2])) ;

Pot=−k s p r ∗ r0∗ r0 ∗0.5∗ log (1−(r2 /(r0∗ r0))) ;
//Pot= 0.5∗ kspr∗ r2 ;

U [dj] [1]= U [dj] [1]+ Pot ;
}

A.1 Verlet test code

The code written to test the Velocity Verlet method in §3.1.1 is displayed below:

Single polymer in solution code 61

#inc lude <s t d i o . h>
#inc lude <math . h>

double t ; /∗ time∗/
double dt ; /∗ t imestep ∗/
double r ; /∗ po s i t i o n ∗/
double v ; /∗ v e l o c i t y ∗/

void v e r l e t () ;

i n t m a i n ()
{
r =1.;
dt =0.01;
v =2.;

F I L E ∗ f i l e _ p t r ;
f i l e _ p t r = f o p e n (” v e r l e t t e s t . txt ” , ”w”) ;
f o r (t =0.; t <=150.; t+=dt)
{
/∗ record time , exact so lu t i on , v e r l e t s o l u t i on ∗/
f p r i n t f (f i l e _ p t r , ”\n%f \ t%f \ t%f ” , t , cos (t)+(2∗ sin (t)) , r) ;
v e r l e t () ;
}
f c l o s e (f i l e _ p t r) ;
r e turn 0 ;
}

void v e r l e t ()
{
double a ;
a=−r ;
v=v+(0.5∗ dt∗a) ;
r=r+(v∗ dt) ;
a=−r ;
v=v+(0.5∗ dt∗a) ;
}

62

B Polymer network code

This code was originally written by Dr Zuowei Wang (in C) to model multiple
charged diblock polymers (of one type). For the benefit of this project it was
adapted to model two types of polymer in the same simulation. The code consists
of several C files and would be a tremendous waste of paper if it were included
here. Instead, a few examples of the types of changes made are included below.
This code also uses random number generators taken from ’Numerical methods
in C’, alongside the FFTW (fastest Fourier transform in the west) code for the
ewald summation, where the P3M method is used. The multiple-tau method used
to correlate the stress was written by Dr Zuowei Wang in Fortran.

B.1 Analysis functions

Below is the list of the majoriy of analysis functions added to Dr Wang’s code to
perform on-the-fly analysis. These also produces the pictures and frames required
to visualize the simulation in VMD.

void w r i t e _ o u t _ p d b (F I L E ∗ FilePtr , F I L E ∗ F i l e P t r 2)
{
i n t i , j , a t o m _ n m b , r e s _ n m b ;
char ∗ a t o m _ n a m e , ∗ r e s _ n a m e ;
double atomccp , B _ v a l u e ;
char ∗ r e c o r d _ I D=”ATOM ” ;

a t o m c c p = 1 . 0 ;
B _ v a l u e =20.000;

f p r i n t f (F i l e P t r 2 , ”CRYST1%9.3 f %9.3 f %9.3 f %7.2 f %7.2 f %7.2 f P 1 1\n” ,
10∗ b o x _ l [0] , 10∗ b o x _ l [1] , 10∗ b o x _ l [2] , 9 0 . , 9 0 . , 9 0 .) ; /∗ r e co rds PBC data∗/

/∗ record to pdb f i l e d e t a i l s o f x−type polymers∗/
f o r (i=0; i<p o l y X . N ; i++)
{

r e s _ n a m e=”PLX” ;
r e s _ n m b=i+1;

/∗ t h i s s e c t i on has been modi f ied from the base code ,
a l l commented atom names are the only ones that there ’ l l be∗/
/∗ organ ic atoms are S , O, N, ∗/
f o r (j=0; j<p o l y X . MPC ; j++)
{

a t o m _ n m b=i∗ p o l y X . MPC + j ;

i f (p a r t [a t o m _ n m b] . t y p e==0)
{ a t o m _ n a m e=”NXA” ;} // :) n eu t r a l s
e l s e
{ a t o m _ n a m e=”OXB” ;} // s t i c k y s

/∗ s c a l e up f o r video ∗/
f p r i n t f (F i l e P t r 2 , ”%−6s%5d%5s%4s%6d %8.3 f %8.3 f %8.3 f %6.2 f %6.2 f \n” ,
r e c o r d _ I D , a t o m _ n m b +1, a t o m _ n a m e , r e s _ n a m e , res_nmb ,
10∗ f m o d 2 (p a r t [a t o m _ n m b] . r [0] , b o x _ l [0]) , 10∗ f m o d 2 (p a r t [a t o m _ n m b] . r [1] , b o x _ l [1]) ,
10∗ f m o d 2 (p a r t [a t o m _ n m b] . r [2] , b o x _ l [2]) , atomccp , B _ v a l u e) ;
f p r i n t f (FilePtr , ”%−6s%5d%5s%4s%6d %8.3 f %8.3 f %8.3 f %6.2 f %6.2 f \n” ,
r e c o r d _ I D , a t o m _ n m b +1, a t o m _ n a m e , r e s _ n a m e , res_nmb , p a r t [a t o m _ n m b] . r [0] ,
p a r t [a t o m _ n m b] . r [1] , p a r t [a t o m _ n m b] . r [2] , atomccp , B _ v a l u e) ;

}
}

f o r (i=0; i<p o l y Y . N ; i++)

Polymer network code 63

{
r e s _ n a m e=”PLY” ;
r e s _ n m b=p o l y X . N + i + 1;

f o r (j=0; j<p o l y Y . MPC ; j++)
{ a t o m _ n m b= p o l y X . N∗ p o l y X . MPC + i∗ p o l y Y . MPC + j ;

i f (p a r t [a t o m _ n m b] . t y p e==0)
{ a t o m _ n a m e=”CYA” ;} // :) n eu t r a l s
e l s e
{ a t o m _ n a m e=”SYB” ;} // s t i c k y s

f p r i n t f (F i l e P t r 2 , ”%−6s%5d%5s%4s%6d %8.3 f %8.3 f %8.3 f %6.2 f %6.2 f \n” ,
r e c o r d _ I D , a t o m _ n m b +1, a t o m _ n a m e , r e s _ n a m e , res_nmb ,
10∗ f m o d 2 (p a r t [a t o m _ n m b] . r [0] , b o x _ l [0]) , 10∗ f m o d 2 (p a r t [a t o m _ n m b] . r [1] ,
b o x _ l [1]) , 10∗ f m o d 2 (p a r t [a t o m _ n m b] . r [2] , b o x _ l [2]) , atomccp , B _ v a l u e) ;

f p r i n t f (FilePtr , ”%−6s%5d%5s%4s%6d %8.3 f %8.3 f %8.3 f %6.2 f %6.2 f \n” ,
r e c o r d _ I D , a t o m _ n m b +1, a t o m _ n a m e , r e s _ n a m e , res_nmb , p a r t [a t o m _ n m b] . r [0] ,
p a r t [a t o m _ n m b] . r [1] , p a r t [a t o m _ n m b] . r [2] , atomccp , B _ v a l u e) ;

}
}

f o r (i=0; i<c o u t . N ; i++) /∗ NO PBC UPDATE FOR COUNTERIONS∗/
{

r e s _ n a m e=”PCN” ;
a t o m _ n a m e=”PCN” ;
r e s _ n m b=p o l y X . N∗ p o l y X . MPC + p o l y Y . N∗ p o l y Y . MPC + i ;
a t o m _ n m b=r e s _ n m b ;

f p r i n t f (FilePtr , ”%−6s%5d%5s%4s%6d %8.3 f %8.3 f %8.3 f %6.2 f %6.2 f \n” ,
r e c o r d _ I D , a t o m _ n m b +1, a t o m _ n a m e , r e s _ n a m e , r e s _ n m b+1,
f m o d 2 (p a r t [a t o m _ n m b] . r [0] , b o x _ l [0]) , f m o d 2 (p a r t [a t o m _ n m b] . r [1] , b o x _ l [1]) ,
f m o d 2 (p a r t [a t o m _ n m b] . r [2] , b o x _ l [2]) , atomccp , B _ v a l u e) ;

}
/∗ s e t up bond l i n k s ∗/
r e c o r d _ I D=”CONECT” ;

f o r (i=0; i<p o l y X . N ; i++)
{

f o r (j=0; j<p o l y X . MPC −1; j++)
{
a t o m _ n m b=i∗ p o l y X . MPC + j + 1;
f p r i n t f (FilePtr , ”%−6s%5d%5d\n” , r e c o r d _ I D , a t o m _ n m b , a t o m _ n m b +1);
f p r i n t f (F i l e P t r 2 , ”%−6s%5d%5d\n” , r e c o r d _ I D , a t o m _ n m b , a t o m _ n m b +1);
}

}

f o r (i=0; i<p o l y Y . N ; i++)
{

f o r (j=0; j<p o l y Y . MPC −1; j++)
{
a t o m _ n m b=p o l y X . MPC ∗ p o l y X . N + i∗ p o l y Y . MPC + j + 1;
f p r i n t f (FilePtr , ”%−6s%5d%5d\n” , r e c o r d _ I D , a t o m _ n m b , a t o m _ n m b +1);
f p r i n t f (F i l e P t r 2 , ”%−6s%5d%5d\n” , r e c o r d _ I D , a t o m _ n m b , a t o m _ n m b +1);
}

}
f p r i n t f (FilePtr , ”END\n\n”) ;

}

/∗ Generate frames f o r VMD ∗/
void w r i t e _ o u t _ x y z (F I L E ∗ FilePtr , F I L E ∗ F i l e P t r 2 , i n t i s t e p)
{

i n t i , p a r t _ i n d e x ;

/∗ b i t s f o r xyz∗/
f p r i n t f (FilePtr , ”%d\n” , N _ P a r t i c l e) ;
f p r i n t f (FilePtr , ”%d\n” , i s t e p) ;

/∗ b i t s f o r xyzPBC∗/
f p r i n t f (F i l e P t r 2 , ”%d\n” , N _ P a r t i c l e) ;
f p r i n t f (F i l e P t r 2 , ”%d\n” , i s t e p) ;

f o r (i=0; i<N _ P a r t i c l e ; i++)
{/∗wr i te out coords ∗/
p a r t _ i n d e x=p a r t [i] . t y p e +((i n t) p a r t [i] . q+1)∗10;

f p r i n t f (FilePtr , ”%10d%15.6 f %15.6 f %15.6 f \n” ,
p a r t _ i n d e x , p a r t [i] . r [0] , p a r t [i] . r [1] , p a r t [i] . r [2]) ;

64 Analysis functions

/∗wr i te out coords with PBC∗/
p a r t _ i n d e x=p a r t [i] . t y p e +((i n t) p a r t [i] . q+1)∗10;
f p r i n t f (F i l e P t r 2 , ”%10d%15.6 f %15.6 f %15.6 f \n” ,
p a r t _ i n d e x , 10∗ f m o d 2 (p a r t [i] . r [0] , b o x _ l [0]) ,
10∗ f m o d 2 (p a r t [i] . r [1] , b o x _ l [1]) , 10∗ f m o d 2 (p a r t [i] . r [2] , b o x _ l [2])) ;
}

}

/∗ f unc t i on to c a l c u l a t e modulus∗/
double f m o d 2 (double p o s i t i o n , double l e n g t h)
{
double n e w p o s ;
n e w p o s=f m o d (p o s i t i o n , l e n g t h) ;
i f (newpos <0)
{ n e w p o s=n e w p o s+l e n g t h ;}

re turn n e w p o s ;
}

/∗ L i s t o f i n s t r u c t i o n s to implement t h i s in to other f i l e s :
Function i s c a l l e d JUST AFTER ve l o c i t y v e r l e t .
r f p a r t [n]+=da∗db∗ f o r c e o v e r d i s t ; must be added to each f o r c e c a l c u l a t i o n loop
A g l oba l ’ r f p a r t [9] ’ array w i l l need to be de f ined

∗/

void s t r e s s _ c a l c (F I L E ∗ FilePtr , double t t i m e)
{
i n t i , a , b , n ; /∗a and b correspond to alpha and beta from d e f i n i t i o n ∗/
double V ;

V=b o x _ l [0] ∗ b o x _ l [1] ∗ b o x _ l [2] ; /∗volume o f box∗/

/∗ c a l c u l a t e v e l o c i t y part here , and add to r f to f i nd sigma∗/

f o r (i=0; i<N _ P a r t i c l e ; i++)
{ n=0;

f o r (a=0; a<3; a++)
{ f o r (b=0; b<3; b++)

{
r f _ p a r t [n]= r f _ p a r t [n]−((p a r t [i] . v [a]∗ p a r t [i] . v [b]) / SQR (dt)) ;
/∗ d iv ide v e l o c i t y by dt∗/
n++;
}

}
}

f o r (n=0; n<9; n++)
{ r f _ p a r t [n]= r f _ p a r t [n] / V ;} /∗ d iv ide by volume to complete the c a l c u l a t i o n o f shear s t r e s s ∗/

// p r i n t f (”%16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f \n” ,
ttime , r f _ p a r t [0] , r f _ p a r t [1] , r f _ p a r t [2] , r f _ p a r t [3] , r f _ p a r t [4] ,
r f _ p a r t [5] , r f _ p a r t [6] , r f _ p a r t [7] , r f _ p a r t [8]) ;

f p r i n t f (FilePtr , ”%16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f %16.8 f \n” ,
ttime , r f _ p a r t [0] , r f _ p a r t [1] , r f _ p a r t [2] , r f _ p a r t [3] , r f _ p a r t [4] , r f _ p a r t [5] ,
r f _ p a r t [6] , r f _ p a r t [7] , r f _ p a r t [8]) ;

/∗ r e co rds xyz data to f i l e ∗/

f o r (n=0; n<9; n++)
{ r f _ p a r t [n]=0 . ;} /∗milked r f p a r t [] dry now − s e t i t back to zero f o r the next time step ∗/
}

void r e c _ f u n c t i o n a l i t y ()
{

/∗add a g l oba l double c l u s t c u t & in t e g e r ar rays network [] & l i n k s []
that are both s i z e N Poly . I t would be po s s i b l e to have a 2D array ,
where the second part i s s i z e 2 , and t a l l y s the number o f X and Y polymers∗/

in t N _ p o l y=p o l y X . N+p o l y Y . N ; /∗ t o t a l number o f polymers∗/
in t c o n n e c t [N _ p o l y] [N _ p o l y] ; /∗ conne c t i v i t y matrix∗/
in t i , j , ip , jp ;
i n t k , col , sum ;
i n t a , b , c ; /∗ d i r e c t i o n s f o r PBC∗/
in t f ; /∗ f u n c t i o n a l i t y counter ∗/
// in t f f l a g ;
p r i n t f (”1”) ;
sum=0;

Polymer network code 65

/∗ i n i t i a l i z e matrix with ze ro s everywhere ∗/
f o r (i=0; i<N _ p o l y ; i++)

{ f o r (j=0; j<N _ p o l y ; j++)
{ i f (i==j)

{ c o n n e c t [i] [j]=1;} /∗ always 1 on d iagona l ∗/
e l s e

{ c o n n e c t [i] [j]=0;}
}

}
f=0;
f o r (i=0; i<N _ P a r t i c l e ; i++)

/∗PBC loops . . . ? ∗/
{ f o r (j=0; j<N _ P a r t i c l e ; j++)/∗can ’ t go from j=i+1 due to f un c t i ona i t y c a l c u l a t i o n s ∗/

{ f o r (a=−1; a<2; a++) /∗ over PBC∗/
{ f o r (b=−1; b<2; b++)
{ f o r (c=−1; c<2; c++) /∗ i f two p a r t i c l e s s a t i s f y cond i t i on s o f c onne c t i v i t y ∗/

{ i f (((p a r t [j] . t y p e+p a r t [i] . t y p e)==3) && (SQR (p a r t [i] . r [0]− p a r t [j] . r [0]+
(a∗ b o x _ l [0]))+ SQR (p a r t [i] . r [1]− p a r t [j] . r [1]+
(b∗ b o x _ l [1]))+ SQR (p a r t [i] . r [2]− p a r t [j] . r [2]+(c∗ b o x _ l [2])) <= SQR (c l u s t _ c u t)))
/∗ i f s a t i s f i e d , the two monomers and t h e i r corresponding
polymers are connected in the network∗/
/∗ they must now be unpicked and t h e i r corresponding polymers
must be found and o f f i c i a l l y l i nked ∗/
{
f++; /∗There ’ s a l i n k − so we add one to the f u n c t i o n a l i t y counter ∗/
i f (i<p o l y X . MPC ∗ p o l y X . N) /∗ i f ’ i ’ i s on an X type polymer∗/

{ ip=i/ p o l y X . MPC ;} /∗ index o f polymer∗/
e l s e /∗ i f i i s a Y type polymer∗/

{ ip=((i−(p o l y X . MPC ∗ p o l y X . N))/ p o l y Y . MPC)+ p o l y X . N ;}

i f (j<p o l y X . MPC ∗ p o l y X . N) /∗ i f ’ j ’ i s on an X type polymer∗/
{ jp=j/ p o l y X . MPC ;} /∗ index o f polymer∗/

e l s e /∗ i f j i s a Y type polymer∗/
{ jp=((j−(p o l y X . MPC ∗ p o l y X . N))/ p o l y Y . MPC)+ p o l y X . N ;}

c o n n e c t [ip] [jp]=1;
c o n n e c t [jp] [ip]=1; /∗probably don ’ t need t h i s as both sums go
over a l l p a r t i c l e s , symmetry should simply f a l l out na tu ra l l y ∗/
} /∗˜ out s ide i f statement ∗/

} /∗˜ inner f o r loop ∗/
}}} /∗˜ over PBC∗/

/∗ f i s now equal to the f u n c t i o n a l i t y o f monomer i ∗/
i f (p a r t [i] . t y p e !=0) /∗ obv ious ly most monomers w i l l not be ab le to a s s o c i a t e −
these should not cont r ibute to the f u n c t i o n a l i t y c a l c u a l a t i o n s ∗/
{ f u n c t i o n a l i t y [f]++; /∗bin f o r f u n c t i o n a l i t y o f a s o c i a t i n g monomers∗/
}
f=0;

} /∗˜ outer f o r loop ∗/
/∗sum up the number o f connect ions o f each polymer∗/
sum=0;
f o r (i=0; i<N _ p o l y ; i++) /∗ over a l l columns∗/
{ f o r (j=0; j<N _ p o l y ; j++) /∗sum elements o f each entry in that column∗/

{ sum+=c o n n e c t [i] [j] ; }
sum−−; /∗ subt rac t d iagona l (s e l f) term from l i n k s ∗/
l i n k s [sum]++; /∗ r e co rds the t o t a l number o f l i n k s ∗/
sum=0;
p r i n t f (”2”) ;
}

/∗now reduce the matrix in to minimum number o f ’ l i nked ’ columns∗/

f o r (col=N_poly −1; col >=0; col−−) /∗ co l i s index o f (cur rent)
column of matrix being eva luated ∗/

{ f o r (j=0; j<N _ p o l y ; j++) /∗ ’ c o l ’ i s compared aga in s t t h i s columns∗/
{ f o r (i=0; i<N _ p o l y ; i++) /∗ rows∗/

{ i f (c o n n e c t [i] [j]==1 && c o n n e c t [i] [col]==1 && col != j)
/∗ i f the two polymers are ’ l i nked ’ . . . ∗/

{
f o r (k=0; k<N _ p o l y ; k++)
{ i f (c o n n e c t [k] [col]==1)
/∗ . . . then l i n k the f i r s t column with every polymer
that the f i n a l polymer i s l i nked with∗/

{
c o n n e c t [k] [j]=1;
c o n n e c t [k] [col]=0;
}

}
i=N _ p o l y ;

/∗ breaks loop over rows to save time , as the two columns are i d e n t i c a l now
and th i s column won ’ t need any more updating f o r the moment∗/

66 Mean squared displacement analysis code

}
}

}
}

p r i n t f (”3”) ;
f o r (j=0; j<N _ p o l y ; j++) /∗columns , most w i l l be zero by now∗/

{ f o r (i=0; i<N _ p o l y ; i++) /∗ rows∗/
{
sum+=c o n n e c t [i] [j] ; /∗add up the number o f polymers in the network
repre s ented by t h i s column∗/
}

n e t w o r k [sum]++; /∗ array keeps t a l l y o f varying s i z e s o f networks .
the t o t a l c on t r i bu t i on at each time step should equal N Poly , so
we can d iv ide by (N Poly∗number o f samples) when wr i t ing out∗/

//most sums w i l l be zero . these can be ignored l a t e r on .
sum=0; /∗ i n i t i a l i z e sum f o r to t a l l y up the next column ∗/
}

}

void p r i n t _ o u t _ n e t w o r k ()
{

i n t n , i ;

F I L E ∗ c l u s t _ F i l e P t r ; /∗ F i l e f o r c l u s t e r p r obab i l i t y ∗/
c l u s t _ F i l e P t r = f o p e n (” c l u s t e r p r o b a b i l i t y . txt ” , ”w”) ;
F I L E ∗ c o n n e c t _ F i l e P t r ; /∗ F i l e f o r s t o r i n g connect ion p r obab i l i t y ∗/
c o n n e c t _ F i l e P t r = f o p e n (” c onne c t i on p r obab i l i t y . txt ” , ”w”) ;
F I L E ∗ f u n c t _ F i l e P t r ; /∗ F i l e f o r f u n c t i o n a l i t y p r obab i l i t y ∗/
f u n c t _ F i l e P t r = f o p e n (” f u n c t i o n a l i t y p r o b a b i l i t y . txt ” , ”w”) ;

n=p o l y X . N+p o l y Y . N ;

f p r i n t f (c o n n e c t _ F i l e P t r , ” l i n k s \ t f r e q \ t ”) ;
f p r i n t f (c l u s t _ F i l e P t r , ” c l u s t e r s i z e \ t f r e q ”) ;
f p r i n t f (f u n c t _ F i l e P t r , ” Func t i ona l i t y \ t f r e q ”) ;

f o r (i=0; i<=n ; i++)
{
f p r i n t f (c o n n e c t _ F i l e P t r , ”\n%d\ t%d” , i , l i n k s [i]) ;
f p r i n t f (c l u s t _ F i l e P t r , ”\n%d\ t%d” , i , n e t w o r k [i]) ;
f p r i n t f (f u n c t _ F i l e P t r , ”\n%d\ t%d” , i , f u n c t i o n a l i t y [i]) ;
/∗ l i n k s [i]=0;
network [i]=0; ∗/
}
f c l o s e (c o n n e c t _ F i l e P t r) ;
f c l o s e (c l u s t _ F i l e P t r) ;
f c l o s e (f u n c t _ F i l e P t r) ;

}

void i n i t _ a r r a y s ()
{ i n t n , i ;
n=p o l y X . N+p o l y Y . N ;
f o r (i=0; i<=n ; i++)
{ l i n k s [i]=0;
n e t w o r k [i]=0;
f u n c t i o n a l i t y [i]=0;}
}

B.2 Mean squared displacement analysis code

The mean squared displacement was not calculated on-the-fly, instead the coordi-
nates of the .xyz file recorded during simulation are read into the following code
and analyzed separately. In the code we make use of the following relationship, if

R(t) = (r1(t), . . . , rN (t))T

then it follows that〈
|ri(t)− ri(t0)|2

〉
=

1
N

N∑
i=1

(R(t)−R(t0)) · (R(t)−R(t0))

Polymer network code 67

#inc lude <s t d i o . h>

f l o a t d a t a [1 0 0 0 0] [1 0 2 0 0] ; /∗ [s t ep s] [3N] ∗/
f l o a t c o r r e l a t i o n [1 0 0 0 0] ; /∗ entry j = <t j−t 0 >, must be s i z e ’ s t ep s ’ ∗/

in t N , s t e p s ;

i n t m a i n ()
{

i n t i , j , k , k1 , k2 , N , T ; /∗remember a l l s t ep s are mu l t i p l i ed by the
f requency at which the . xyz data was recorded ∗/

in t te=10; /∗ time al lowed f o r equ i l i b r ium ∗/
in t s t e p s =10000; /∗ t o t a l number o f coord inate e n t r i e s in the f i l e ∗/
// double sum ;
N=3400; // 3400 ;
f l o a t d1 , d2 , d3 , c o r r l ;

/∗ t o t a l number o f frames i s j =10001∗/
F I L E ∗ x y z _ p t r ;
x y z _ p t r=f o p e n (” frames . xyz” , ” r ”) ;
F I L E ∗ r m d _ p t r ;
r m d _ p t r=f o p e n (” sqrmn displacement . txt ” , ”w”) ;

/∗ scan over f i r s t two i n t e g e r e n t r i e s . . . these won ’ t be needed though∗/

/∗ s l l ow time f o r e q u i l i b r a t i o n ∗/
f o r (j=0; j<(te) ; j++)

{ f s c a n f (xyz_ptr , ”%d\n%d\n” , &k1 , &k2) ;
// p r i n t f (”%d\ t%d” , k1 , k2) ;
/∗ scans f i r s t s e t o f coo rd ina t e s ∗/

f o r (i=0; i<N ; i++)
{
f s c a n f (xyz_ptr , ”%d%f%f%f ” , &k1 , &d1 , &d2 , &d3) ;
}

}

// whi le (! f e o f (xyz ptr))
{
f o r (j=0; j<s t e p s ; j++)

{
f s c a n f (xyz_ptr , ”%d\n%d\n” , &k1 , &k2) ;
/∗ scans f i r s t s e t o f coo rd ina t e s ∗/
f o r (i=0; i<N ; i++)

{
f s c a n f (xyz_ptr , ”%d%f%f%f ” , &k1 , &d a t a [j] [3 ∗ i] ,
&d a t a [j] [3 ∗ i+1] , &d a t a [j] [3 ∗ i +2]) ;
}

// p r i n t f (”%d\n” , j) ;
}

}

/∗data was only taken every 1000 dt in s imu la t i on anyway .
This i s how many time s t ep s o f data we a c tua l l y have . ∗/

f c l o s e (x y z _ p t r) ;

p r i n t f (”XYZ scanned\n”) ;

f o r (T=1; T<s t e p s ; T++)
{
c o r r l =0;

// p r i n t f (” ! ! ! ”) ;
f o r (j=T ; j<s t e p s ; j++)

{ f o r (i=0; i<3∗N ; i++)
{ c o r r l+=(d a t a [j] [i]−
d a t a [j−T] [i]) ∗ (d a t a [j] [i]− d a t a [j−T] [i]) ;
}

}
c o r r e l a t i o n [T−1]= c o r r l /(N ∗(steps−T) ;
/∗There w i l l have been steps−T samples o f data taken ,
averaged over N p a r t i c l e s a l s o ∗/

// p r i n t f (”% f \n” , c o r r e l a t i o n [T−1]) ;
f p r i n t f (rmd_ptr , ”%f \n” , c o r r e l a t i o n [T−1]) ;
}

f c l o s e (r m d _ p t r) ;
p r i n t f (”\nDONE”) ;
re turn 0 ;

}

	Introduction
	Self-healing polymers
	Project aims

	Polymer dynamics
	Lagrangian and Hamiltonian mechanics
	The partition function
	The Lagrangian of a polymer system
	Langevin dynamics
	Potential of the polymer system
	Lennard-Jones potential
	Entropic spring potential
	Coulomb potential

	Molecular Dynamics
	Velocity Verlet
	Example - testing velocity Verlet

	Lennard-Jones cutoff
	Periodic boundary conditions

	Modelling a single polymer in solution
	The model
	Initialization
	End-to-end distance distribution
	Flory's characteristic ratio
	Radius of gyration
	Summary of results

	Advanced methods
	Initialization
	The Verlet & Cell lists
	Verlet list
	Verlet list for a periodic system
	Cell list and comparison with Verlet list

	Ewald summation
	Fast Fourier transform
	Multiple-tau auto-correlation function

	Modelling self-healing polymer networks
	The model
	The stress modulus
	The Ewald problem

	Network analysis
	Example: Adjacency matrix of a simple system

	Self-healing polymer networks
	Cordier's network
	Burattini's network

	Functionality results
	Diffusion results
	Stress modulus results
	Summary

	Single polymer in solution code
	Verlet test code

	Polymer network code
	Analysis functions
	Mean squared displacement analysis code

